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Abstract

Computer security continues to increase in importance both in the commercial

world and within the Air Force. Dedicated hardware for security purposes presents

and enhances a number of security capabilities. Hardware enhances both the security

of the security system and the quality and trustworthiness of the information being

gathered by the security monitors. Hardware reduces avenues of attack on the security

system and ensures the trustworthiness of information only through proper design and

placement. Without careful system design, security hardware leaves itself vulnerable

to many attacks that it is capable of defending against. Our SHI(EL)DS architecture

combines these insights into a comprehensive, modular hardware security backplane

architecture. This architecture provides many of the capabilities required by the

Cybercraft deployment platform. Most importantly, it makes significant progress

towards establishing a root of trust for this platform. Progressing the development of

the Cybercraft initiative advances the capabilities of the Air Force’s ability to operate

in and defend cyberspace.
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SHI(EL)DS:

A Novel Hardware-based Security Backplane

to Enhance Security with

Minimal Impact to System Operation

I. Introduction

D
edicated hardware provides significant improvement to security solutions when

properly designed and implemented. This work explores how and what ad-

vantages are gained by a security system through its use. It develop a general se-

curity architecture called Secure Hardware Intrusion (Elimination, Limitation, and)

Detection System (SHI(EL)DS), which incorporates hardware to improve a system’s

overall security and provide a basis for the Cybercraft deployment platform. This

work supports the Air Force’s expanded mission of defending Cyberspace. By pro-

viding improved security of our computer systems and supporting the development

of Cybercraft, this research helps to protect vital information and assets as more and

more of our military becomes reliant on computer systems. This research provides

direct application to server networks and critically exposed systems in our networks.

1.1 Background and Problem Overview

Despite computer security continuously increasing importance in today’s con-

nected world, the capabilities and speed aspects of computer performance continue

to dominate designer’s primary goals when creating new systems. With security not
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receiving the main focus of designers, the responsibility is pushed from hardware to

software developers to implement good programming practices and adapt how an

operating system (OS) handles the processes it is given to control. These practices

are often ignored, compounding the inherent vulnerabilities of a computer system,

and even when considered become increasingly difficult to achieve as systems become

more and more complex. A number of hardware-based solutions have been conceived

in recent years, though again most are not designed by the primary designers, but left

to third party developers and built as peripherals to the system. Although developers

such as IntelR©have begun to design Trusted Execution Technology into their archi-

tectures, they still have limited scope and usability [31]. Despite this work and the

ever increasing number of security focused publications, the number of vulnerabilities

reported each year has increased 35-fold from 1995 to 2005 and continues to increase

through the present [12].

Compounding the issue of creating a viable security solution is the inherent

inverse relationship, especially in software based solutions, between how secure a sys-

tem is and its usability/performance. Few designers and developers are willing to

trade performance for security, creating a demand for any security system to provide

a significant increase in security for any small amount of performance degradation.

Developing a hardware-based security backplane eliminates contention for system re-

sources and leaves a much smaller degradation footprint on a production system,

especially in the realm of monitoring.
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The current field of computer security creates defenses which are significantly

flawed. Lack of realtime monitoring capability and known accurate information

severely hamper current security solutions. Once the system software core, the kernel,

has been compromised current software security solutions are also compromised since

they run as a process managed by the kernel. This problem extends to all software

solutions, regardless of their own security measures.

1.2 Research Goals

This research aims to accomplish a number of goals. It attempts to understand

the role of hardware for enhancing security within a system. This research explores

if it is necessarily or helpful, and how to implement it to achieve improved security.

It also evaluates a number of proposed hardware security solutions based on this

understanding. This research aims to clearly identify how to ensure security monitor

receives accurate data. Without accurate data, any attempts to interpret this data

and act on what it is telling the security system runs a much higher risk of providing

erroneous operation of the security system.This research explores the security of the

information being passed from the production system to the security system and how

to categorize it.

Having explored the need for hardware in security, this research leverages an

understanding of the role of hardware in security and how to ensure a monitor receives

accurate data to develop a dedicated security hardware backplane. The design of this

security backplane aims to provide a system with three key advantages. It provides an

3



unobtrusive design with little or no change to existing production system operation

and performance. It also provides maintainable self security even when the security

of the production system is compromised. Finally, it leverages hardware primitives

identified to provide and enhance unique aspects of monitoring and response. After

developing the hardware security backplane architecture, this research presents this

architecture as a basis for developing the Cybercraft deployment platform. It attempts

to design the security backplane to meet the goals of the Cybercraft initiative.

1.3 Contributions

Through the course of this research, a number of contributions to the field of

computer security are presented. They are listed here:

• This research identifies a new axis of security for the information being passed to

the security system/monitor from the production system and developed a cate-

gorization for the Trustworthiness of Information being retrieved by the security

system, identifying whether the possibility for compromise of this information

is possible.

• This research develops a critical understanding of the need for dedicated hard-

ware to enhance security. It analyzes why software is incapable of securely

protecting software when operating on the same system and shows that hard-

ware in and of itself does not necessarily improve on software-based solutions

without proper design and location. It also presents advantages gained and en-

4



hanced through the use of dedicated hardware and explicitly defines hardware

requirements to solve inadequacies of software solutions.

• This work develops a novel hardware security backplane architecture that pro-

vides a framework for development of security solutions. It utilizes an un-

derstanding of the Trustworthiness of Information and the requirements for

providing improvements through dedicated hardware in security.

• Lastly, this research augments the Cybercraft initiative development by enabling

a root of trust for the Cybercraft deployment platform with the backplane ar-

chitecture. It also provides additional information and capabilities to be utilized

by Cybercraft sensor, decision engine, and effector payloads.

1.4 Document Layout

Chapter II provides an overview of different classifications and taxonomies re-

lating to intrusions, intrusion detection, security, and trust. This work provides a

basis for a discussion on dedicated hardware for security in Chapter III. It presents

research into why dedicated hardware is needed, the advantages which can be gained

from it and what precisely is required to realize these advantages. This research also

explains what is meant by hardware-based security. To aid in the discussion of the

necessity of hardware we develop a classification for the trustworthiness of informa-

tion, showing that only hardware is capable of providing First-hand Information, a

necessary condition for guaranteeing accurate monitoring.

5



With this understanding of hardware this research presents an overview of cur-

rent security solutions in Chapter IV. It looks at a number of software and virtual

machine monitor (VMM) solutions and discuss their weaknesses in terms of the un-

derstanding gained from the previous chapter. This work explores a wide range of

research presenting hardware solutions in both host and network intrusion detection.

It evaluates these hardware solutions in terms of how effective they are in achieving

the advantages of hardware laid out in Chapter III and how closely they adhere to

the requirements presented there.

After exploring different proposed and implemented security solutions, this re-

search develops a security backplane to provide a comprehensive security solution.

Chapter V lays out the SHI(EL)DS architecture. This architecture attempts to

achieve unique and enhance current security capabilities, through meeting the require-

ments outlined in Chapter III. By forming a security backplane concept designed to

be modular and minimize modification to the production system, this work presents

an architecture that achieves enhanced security without modifying the instruction set

architecture (ISA) of the production system. Chapter VI presents the SHI(EL)DS ar-

chitecture as the basis for creating the Cybercraft deployment platform. Chapter VII

concludes this work with a summary of the key contributions and a discussion of

future research avenues that are opened by this research.
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II. Review of Computer Security Taxonomies and

Classifications

H
ere we present research related to our own work. To frame the discussion of

our research we will present work into a number of different topics. First we

will look at classifying different types of attacks and methods of intrusion detection

(ID). We will present different intrusion detection systems (IDS) which have been

implemented along with a number of hardware-based security mechanisms which have

been proposed.

2.1 Attacks, Vulnerabilities, and Exploits

There are various types of attack. Viruses, Rootkits, Timing-based Attacks,

and Relocation Attacks are described here to aid in the discussion of this work. A

limited number of specific exploits are described, which are important motivation to

this research and examples of important limitations of current software or hardware

solutions.

2.1.1 Classifications of Attack. Numerous works have presented work on

creating taxonomies of security flaws [37] and types of attacks [41, 40, 51]. Most

classifications of intrusion are developed from the attackers point of view [1, 44]. A

few basic descriptions of different types of attacks are presented here to help frame

the discussion of Intrusion Detection as compiled by Hart [26] and Mott [48].
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Virus A virus is malicious code that is attached to other software. It does not self-

propagate.

Worm A worm is malicious code that is self-propagating.

Trojan A trojan is malicious code embedded in innocent software to provide new

avenues of attack into a system. Can be either non-self-propagating or self-

propagating.

Rootkit A rootkit is code that relies on root level access to modify system call

interaction.1 Malicious rootkits are used to hide inappropriate actions from the

OS and anti-virus software. There have been a number of research efforts into

attempting to classify different types of rootkits [39, 50].

Timing Attack This form of attack exploits sequences of system calls to find vulner-

able states and use knowledge of the interval an IDS scans at to avoid detection.

Relocation Attack This attack consists of malicious code which relocates itself to

avoid detection. Code can be relocated to memory which is not monitored or

even potentially to remain purely in cache [55].

Rutkowska presents a taxonomy for defining stealth malware [62]. Although

she considers malware to only include code that modifies the behavior of the OS

or applications sensitive to security, her taxonomy includes a Type 0 Malware that

encompasses this type of malicious code. Her taxonomy is:

1Rootkits can be used for both beneficial and detrimental purposes, this research is primarily
concerned with Malicious rootkits
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Type 0 Malware This type of malware includes malicious code such as a botnet.

She does not include this in her definition of malware because, although mali-

cious, it does not compromise the OS or running processes.

Type I Malware This malware is defined as code that hooks into the OS or pro-

cess by modifying relatively static resources, such as executable file and code

sections in memory. She proposes that this type of malware can be detected by

verification software. To accomplish this, there must be some baseline, such as

digitally signed executables. The current roadblock to detecting Type I Malware

consistantly is the practice of legitimate software, such as antivirus programs,

using this hooking technique also.

Type II Malware This malware hooks into dynamic resources, such as the data

sections of processes. Since these resources are supposed to be modified, a

static verification tool cannot reliably detect this type of malware.

Type III Malware This malware does not hook into either the static or dynamic

regions of the OS or processes. She presents her Blue Pill proof-of-concept, which

uses AMD’sR©hardware virtualization technology. Since this type of malware

does not modify any part of the OS or its processes, even a dynamic verification

tool would not be able to detect the malware’s presence. Blue Pill is discussed

in more depth in Section 4.2.5.

2.1.2 Taxonomy of Vulnerabilities. Bazaz and Arthur present research to-

wards creating a taxonomy of computer vulnerabilities [6]. Figure 2.1 illustrates their
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proposed taxonomy. Although this taxonomy presents a good start for classifying vul-

nerabilities, the three main classifications of main memory, input/output (I/O), and

cryptographic resources are incomplete. This taxonomy could be made more com-

plete by expanding main memory and I/O to include other volatile memory locations

within a system such as the memory controller’s address tables and any modifiable

firmware like the Basic Input/Output System (BIOS).

Figure 2.1: Bazaz and Arthur’s Taxonomy of Vulnerablities

2.1.3 Important Specific Exploits. This section presents specific exploits to

vulnerabilities that motivate aspects of this research to go beyond the standard areas

of security discussion.

2.1.3.1 Defeating Hardware Based RAM Acquisition. Rutkowska dis-

cusses both software and hardware approaches to memory acquisition with the claim

that the hardware-based approaches are superior to that of software-based solu-
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tions [63]. After citing non-persistent malware as motivation for needing memory

acquisition, she presents a number of known exploits of software memory acquisition

by code running at the same privilege level as the acquisition software and notes

that they require additional software on the target machine which she claims violates

the forensic tool requirement not to write data to the machine which is targeted.

Rutkowska extols the virtues of hardware-based solutions, setting her readers up for

her defeat of this “superior” memory acquisition method.

Figure 2.2: Rutkowska’s Defeat of Hardware Based RAM Acquisition

Rutkowska delivers three levels of compromise to hardware based memory acqui-

sition devices such as CoPilot and Tribble each building upon the same basic exploit

with increasing levels of damage. As shown in Figure 2.2, this exploit involves config-

uring the memory controller on the north bridge to map arbitrary ranges of physical

memory to I/O space. This remapping denies memory access to peripheral devices,
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in I/O space, for the specified physical memory range while not effecting the memory

access of the processor(s). The three levels of exploitation she presents are:

Denial of Service Attack Her attack can deny the monitor access to the specified

memory range.

Covering Attack It can provide the monitor with repetitive masking data.

Full Replacing Attack This attack can even provide the monitor with specifically

formatted data to deceive the monitor into believing it is monitoring a system

which has not been compromised.

The exploits which Rutkowska presents definitively show that current hardware

based memory acquisition devices, specifically those which plug in as a PCI device,

are not reliable. The lesson to be taken from her work is not that hardware cannot

do a better job of providing security features, rather that hardware is not a magic

bullet; it does not automatically improve security. This work highlights that many

current hardware solution are missing an important aspect of the capability and se-

curity of the monitoring system. This provides a substantial motivator to explore the

trustworthiness of the information being received by a security monitor. This critical

axis of security for a monitor, though acknowledged in numerous works [36,79,55,11]

is not well understood and certainly not clearly defined. Section 3.2.3 provides defini-

tive categorization along this axis to help all future work in security related fields

understand what is required to provide truly reliable security monitoring.
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2.2 Taxonomies and Classifications of Intrusion Detection

Significant work has gone into classifying the different aspects of intrusion de-

tection. This section discusses many of these taxonomies to provide a framework

for classifying our security backplane as well explore missing classifiers from current

work. It discusses classifications for how a system attempts detection, the goals of

detection, the timeliness of response of detection, and the response itself. This section

finishes the discussion of classifications and taxonomies by discussing how to classify

the security of the IDS itself. A second axis of the IDS’s security not well explored

and previously undefined is noted, relating to the trustworthiness of the information

the IDS is receiving.

2.2.1 Intrusion Detection Methods. Axelsson [5] describes a taxonomy of

intrusion detection, which is extended by Williams [79] to include specification-based

attacks first described by Ko [35]. This taxonomy is:

Anomaly-based Detection This type of detection monitors a system or process

for abnormalities. It assumes anomalous activity is most likely non-self. There

are two types of anomaly-based detection: self-learning and programmed, which

are differentiated on how they establish a baseline of self to compare against for

abnormal behavior. These generally have better ability to detect novel attacks.

Signature-based Detection This detection checks potential intrusions against a

database of signatures. Signatures can be based on both the actual intrusive

code or the traces left in a system from them. They operate without knowledge
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of what constitutes normal behavior in a system. These signatures must be very

specific and have much better coverage rates from known intrusions.

Specification-based Detection This type of detection provides capabilities to sys-

tems which have clearly defined security specifications. These systems can build

models to detect deviations from these specifications. These specifications take

two forms: default-deny, which specifies legitimate actions; and default-permit,

which specifies illegitimate actions. Williams points out that although Axelsson

categorizes much of this as anomaly-based detection, it shares elements of both

anomaly-based detection and signature-based detection, and does not fit neatly

into either category [79].

Each of these types of detection provide valuable abilities to a system. The

inclusion of a dedicated security processor provides for increased ability to analyze

the system’s state for anomalous behavior and provides a protected location to store

signatures. The increased precision of detection and response provided by our system

allows for significant improvement in the use of specification-based detection, since

the specification can be defined more precisely. Specifications can be securely updated

and are protected from malicious tampering. This is important since any compromise

to the detection methodology can invalidate its ability to function correctly. One

example of this would be a specification on allowable jump targets for a specific

section of a process’ code. If malicious code can modify what targets are allowable,

it can mask its intrusion by adding the malicious jump target to the allowable list.
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2.2.2 Goals of Detection. Kuperman [36] puts forth different goals of com-

puter security monitoring (CSM) in his dissertation. These goals are:

Detection of Attacks This involves detection of attempts to exploit a specific vul-

nerability.

Detection of Intrusion This involves detection of non-legitimate users attempts to

exploit the system.

Detection of Misuse This involves detection of inappropriate use by authorized

user

Computer Forensics This involves data gathering of previous activities to attempt

to capture what caused departure from a safe state

Our security backplane enhances the ability of a security system to achieve each

of these goals though the largest thrust of our research focuses on the detection of

attacks. The addition of hardware monitors throughout the system provide access

to information which is not normally gathered and can be leveraged against specific

vulnerabilities. Though it is not the focus of our research, the security backplane at

the networked level can provide vital resources for computer forensics.

2.2.3 Timeliness of Detection. Kuperman also uses the timeliness of detec-

tion to help classify the operation of different CSM systems. His notation recategorizes

time into an ordered sequence of events. With this understanding he defines the set

of all events that can occur in the system as E, the subset of all malicious events as

B ⊆ E and three events a, b, c ∈ E and b ∈ B Given the notation tx to represent the
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time of event x occurring and x → y representing a causal dependence of y upon x,

we assume that they three events are related such that a → b → c and therefore

ta < tb < tc (2.1)

must be true. Note that although x → y represents a causal dependence it does not

necessarily mean that x is the direct cause of y.

The last piece of notation Kuperman defines for these purposes is the detection

function D(x) which determines the truth of the statement x ∈ B. This detection

function is both complex and widely varied through different security systems and are

almost exclusively imperfect. Kuperman defines the two problem cases for detection

within the bounds of his notation

False Positive: x /∈ B, D(x) = true (2.2)

and

False Negative: x ∈ B, D(x) = false (2.3)

With the notation defined Kuperman presents four main timeliness categorizations

for CSM. These are:

Real-time Detection The detection of a bad event, b, occurs while the system is

operating and before any event which is dependent upon b occurs. Therefore
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the following order is required

tb < tD(b) < tc (2.4)

or alternatively,

tD(b) ∈ (tb, tc) (2.5)

Near Real-time Detection The detection of a bad event, b, occurs within some

predefined time step δ, either before or after tb.

|tb − tD(b)| ≤ δ (2.6)

or,

tD(b) ∈ [tb − δ, tb + δ] (2.7)

Periodic Detection Also referred to as Batch Analysis, batches of events are ana-

lyzed by the security system at a periodic interval, p, which is normally on the

order of minutes or hours. Therefore events must be ordered

tD(b) ≤ tb + 2 × p (2.8)

giving the security system, in the worst case p time to analyze the batch. If

tD(b) violates this constraint, the security system will not be able to finish its

analysis of a batch before the next batch analysis needs to start.
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Although near real-time and periodic detection have effectively the same mea-

sure (with δ being equivalent to 2×p) the key difference between the two is that

near real-time is event driven, where periodic driven by the security system and

polled at the rate p.

Retrospective Detection The detection of a bad event does not occur within any

set time-bounds and typically use archived event data. Many systems which

operate within the first three time categories also have the ability to operate in

this manner as well.

Kuperman comments that this timeliness categorization should be independent

of the underlying hardware and the rate of event occurrence. Although this goal is

desirable for a software-based solution, it relies on assumptions of trustworthiness and

lack of vulnerabilities in this underlying hardware. With today’s computer hardware

this independence is unobtainable. One specific example of why hardware cannot be

blindly trusted is Rutkowska’s attack discussed in Section 2.1.3.1. Our research aims

to achieve Real-time Detection and significantly reduce the δ value for Near Real-time

Detection when Real-time Detection is not achievable.

2.2.4 Intrusion Detection System Responses. Stakhanova et al. present

research towards defining a taxonomy of intrusion response systems [68]. Figure 2.3

presents their taxonomy discussed briefly here. From this taxonomy they highlight

key categories which are desirable for an “ideal intrusion response system”
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Figure 2.3: Taxonomy of Intrusion Response Systems copied directly from [68]

Automatic Due to the volume of intrusions and the speed with which a system can

incur serious damage from being compromised, solely human based responses

have an unacceptably high window of vulnerability. The more the response can

be shifted towards automated, the better the system is able to respond.

Proactive A system’s response needs to occur quickly to minimize the impact of

compromise. Ideally a system would respond in real-time (2.4) allowing the

system to completely negate the impact of the attack.

Adaptable The more a system is able to adapt to the the changes within a sys-

tem and changes to the methods of attack, the more the system will be able
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to remain autonomous from administrator interaction and continue responding

automatically effectively.

Cost-sensitive This category of system is designed to take into account the idea that

the intrusion system’s response might be more costly than the actual symptoms

would be. A system which takes into account this tradeoff can provide a more

tailored response to potential attacks.

Our hardware-based security backplane, described in Chapter V, incorporates

many of these concepts. Our design is shaped to fall within most of Stakhanova’s

desirable categories.

2.2.5 Classification of Monitor’s Security. An often overlooked aspect of

a computer security monitor is the security of the monitor itself. This security is a

critical aspect of a security system, since compromising the monitors can effective

render the security system useless. Mott presents a classification of the security of

the monitors creating eight levels of monitoring system security [48].

Open This worst case scenario occurs when the monitored system has knowledge of

the monitor and coordinating and sharing information with the monitor without

any security mechanisms present to protect the monitor from compromise.

Soft Security This level of monitor security is equivalent to open with additional

software techniques used to secure the monitor. Both of these levels tend to

contain monitors on a uniprocessor host-based intrusion detection system.
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Passive Security The monitor operates without the monitored system necessarily

knowing it is there. To compromise such as system, information about how

the monitor analyzes gathered state data must be known. Prime examples

of this level of security are most network IDSs where only network traffic is

monitored. Specific information passed over the network has the potential to

disable the system, but their are no direct avenues of attack. IDSs of this nature

are discussed in Section 4.3.3.

Self Security Similar to both open and soft security systems, the monitored system

shares information with the monitor. The manner in which the monitor operates

provides it with security, requiring the monitored system to be compromised

before the monitor can be compromised. This security can be enhanced through

software-based techniques. An example of this level of security is Williams’

CuPIDS [79] which is discussed in Section 4.3.2.2.

Loose-hard Security The monitored system again has knowledge and coordinates

with the monitor, sharing information, but dedicated hardware mechanisms pro-

tect key portions of the CSM from compromise. One example of this level of se-

curity are hardware-based return address stacks [38] discussed in Section 4.3.4.2.

Semi-hard Security The monitored system’s knowledge of the monitor is extremely

limited. To provide this level of security the monitor cannot execute on the

same processor core as the monitored software and communications happens

through mechanisms like unmaskable interrupts which are kept to a minimum.
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Compromise can only occur via code controlling synchronization signals to the

monitor, which would cause the monitor to operate in a diminished capacity.

Strict-hard Security This security level adds to the requirements of semi-hard se-

curity by requiring only hardware connections to the monitor and removing

synchronization signals to the monitor. The monitor must be able to gather its

own state information to remove dependence of the monitor on the monitored

system. Two examples of this level of security are CoPilot [55] and Indepen-

dent Auditors [47]. Two examples of this are discussed in Section 4.3.1.2 and

Section 4.3.1.1 respectively.

Complete Security This level of security is the ideal secure case, used as a theo-

retical comparison point. In reality, such a monitoring system would have no

contact with the outside world, making it self defeating because it is unusable.

Mott notes that within many of these levels of security, there is a tradeoff be-

tween the security of the monitor and the ease with which state information can be

gathered from the monitored system [48]. One critical piece of information overlooked

by these categories is the trustworthiness of the information that the monitor is re-

ceiving. Although technically the monitor itself is not corrupted, the effects can be

equivalent. For example, a Supervisory Control And Data Acquisition (SCADA) Sys-

tem controlling critical infrastructure such as the electrical grid, could be manipulated

to perform undesirable actions, without ever compromising the SCADA System. This

can still be accomplished by an attacker who can only manipulate the information

being received by the SCADA System. For instance, if an attacker can manipulate the
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information feeding the SCADA System, telling it that there is a massive overdraw on

the electrical grid, they can affect SCADA System responses such as causing a rolling

blackout. This is accomplished without specifically corrupting the SCADA system to

do so. The SCADA System would respond correctly to the environment it believes

exists, not the actual environment. A simpler exploit corrupting the information be-

ing passed to monitors is a denial of service (DoS) attack. If the SCADA system

does not receive readings from sensors monitoring critical sections of the system, it

will be unable to respond to parameters out of acceptable ranges. This could quickly

compound into catastrophic failure.

Although this issue is acknowledged in relation to ID in a number of works

[79, 15, 55], little research has been found that delves into this aspect. Our research

explores this aspect of the monitor’s security. Rutkowska presents methods for cor-

rupting the memory access of the PCI Bus without effecting the processor’s access

to memory [63] which is discussed in more detail in 2.1.3.1. This exploit highlights

the importance of this aspect of classification for the security of the monitoring sys-

tem. Section 3.2.3 presents an independent axis for categorizing the security of the

monitor relating to the trustworthiness of the monitored data. This categorization

looks at whether the monitoring device relies solely on the component it attempts to

monitor or must trust intermediate components to pass it information. CoPilot, one

of the examples Mott identifies as being strict-hard security, is defeated by this attack

because of its security weakness on this new axis of categorization.
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2.3 Trusted Computing

This chapter concludes by discussing the concept of trust in computing. This

section looks at definitions of trust and a number of proposed requirements for achiev-

ing trust.

2.3.1 Trust Definitions. Significant work has gone into trying to define and

model trust in computer systems. Numerous models abound each with their own

take on how best to quantify trust: hTrust [10], VTrust [57], Secure Environments for

Collaboration among Ubiquitous Roaming Entities (SECURE) [9], security and trust

enhanced mobile agent (SATEMA) [18], an Architecture for Mobile Agents with Re-

cursive Itinerary and Secure Migration (MARISM-A) [59], and I-TRUST [72]. VTrust

is discussed in more detail, both due to the relative merit of the Trust Vector model

and Stevens’ work applying the use of trust vectors to the Cybercraft Initiative [70].

Ray and Chakraborty develop a Trust Vector model with three main components

of trust: experience (We), knowledge (Wk), and recommendations (Wr) [57]. Using

these vectors they define a range of trust from +1 (complete trust) to -1 (complete dis-

trust) with 0 representing no trust. Since these three vectors are used to represent the

entirety of trust in their model it holds that We, Wk, Wr ∈ [0, 1] and We+Wk+Wr = 1.

To generate the overall trust of a remote agent we take the experience evaluation

(AEc
B), the knowledge evaluation (AKc

B), and the recommendation component (ψR
c
B)

with each of their respective components. Given that AEc
B,A Kc

B,ψ Rc
B ∈ [−1, +1], we

know that We×AEc
B +Wk×AKc

B+Wr×ψ Rc
B ∈ [−1, +1]. Their work also discusses a
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trust decay factor. As time passes, after the trust vector of a particular agent has been

evaluated, the level of trust becomes less and less certain since the agent is vulnerable

to compromise this entire time. One flaw in the equations for this degradation, is

that they do not take into account any level of confidence in the security of the agent

being trusted. It stands to reason that the better protected and secured an agent

is, the higher level of confidence that we can have on continuing it’s current level of

trust.

2.3.2 Roots of Trust. The Trusted Computing Group (TCG) defines the

concept of the root of trust as system components which must be trusted to guarantee

detection of compromise [24]. They present three common roots of trust in trusted

platform:

Root of Trust for Measurement (RTM) This is responsible for providing the

basis for trusting integrity checks of the system and the continuous security of

the system.

Root of Trust for Storage (RTS) This is responsible for providing the basis for

trusting information stored by the RTM.

Root of Trust for Reporting (RTR) This is responsible for providing the basis

for trusting the mechanism which allows reporting information stored by the

RTS.

Our SHI(EL)DS architecture makes advancements towards developing each of

these roots of trust in the system. Section 6.2.1.1 explores how this architecture
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provides these advancements and relates it to the development of a Cybercraft de-

ployment platform.

2.3.3 Requirements for Trusted Security System. Anderson proposes the

inclusion of a reference monitor as an essential element of a secure system model,

such as a reference validation mechanism [2]. Figure 2.4 displays the basic architecture

concept of a reference monitor. Three essential elements to the proper design of these

reference monitors are listed here.

Figure 2.4: Reference Monitor

Must be tamper proof To be able to guarantee the integrity of the reference mon-

itor it must be tamper proof.

Must always be invoked If the reference monitor is not always invoked, it cannot

guarantee accurate monitoring of a system.

Small enough to receive complete analysis and testing The reference monitor

must be simple enough to be able to prove that its design and operation are

correct.
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Our system makes headway towards each of these requirements, by designing

a security system which can maintain these requirements. Although the production

system will not be tamper proof or small enough to be completely tested, the physical

separation of the security system will harden its resistance to tampering and the

communication pathways between the two are simplified to the extent that complete

analysis might be achievable. The dedicated security also provides the ability to

always monitor its target, since the lack of resource conflict between the production

and security systems allows the monitor to always be invoked.
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III. Security Backplane Motivation

T
o motivate the need for a hardware security backplane we must first look at

hardware in security. Is it necessary? What advantages can be gained through

its use? What capabilities cannot be achieved without its use? What do we mean by

hardware security? What design requirements are necessary for hardware to enhance

current capabilities and achieve new ones? This chapter examines these questions

to develop a detailed understanding of using dedicated hardware for security. These

findings are used to examine a number of current and proposed security solutions in

the following chapter. Chapter V leverages the understanding gained here to develop

a hardware security backplane architecture, called SHI(EL)DS.

3.1 Research Hypothesis

Current computer architectures have been designed almost completely with per-

formance as the primary goal. Creating a viable security system for today’s computers

requires modification of the basic hardware architecture of these systems. By creat-

ing a separate, parallel security backplane with limited connections to the production

system this research demonstrates a system which provides necessary architecture

modification to enhance security while allowing the functionality and performance of

the production system to be minimally unaffected. This separation allows for signifi-

cant flexibility in the implementation of security response to data gathered from the

proposed hardware security monitors.
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3.2 Why Hardware?

Most current security systems for computers are based largely on software sys-

tems. Numerous flaws and vulnerabilities have been exposed and even exploited in

these different software solutions. Compromise of protected code via rootkits [39]

represent one of the most prevalent exploits. Recent work has begun exploring differ-

ent hardware-based approaches to security [11,54,23,47,48,55,81,67,82,22,28,26,8].

This research suggests that one cannot solely use software to protect software and

only hardware, coupled with software, can do that job successfully. Though a number

of advantages to hardware over software have been suggested, no research was found

discussing what precisely makes hardware a significant improvement over software

and just what capabilities hardware provides that software cannot. A number of key

advantages achievable through the use of hardware are:

Reduced Avenues of Attack Separate monitoring hardware can strengthen the

security of the monitor by reducing the extent of the coupling between the

security and production systems.

Ability to Gather Trustworthy Information Correctly designed hardware guar-

antees that the monitor receives valid data from the production system. This

cannot be accomplished with a standard software security solution, since it must

rely on underlying hardware components.

Additional/Different Information Available Mott’s research explores a number

of pieces of information which can be gathered through hardware primitives and
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leveraged to increase the overall security of the system [48]. These hardware

primitives include information such as the program counter, instruction traces,

and added visibility into memory.

Timeliness of Detection The ability to guarantee real-time detection, as defined in

Section 2.2.3, requires the ability to guarantee that the monitor will execute with

the ordering tb < tD(b) < tc. Work such as Williams’ CuPIDS [79], which at first

glance appears to be a software only solution, does in fact take steps towards a

hardware solution to achieve this ability. When CuPIDS is monitoring a process,

it runs on dedicated hardware, one of the processors in the multiprocessor system

which is a requirement for Williams’ work.

Physical Response Another advantage of dedicated hardware is the ability to pro-

vide a physical response. Although this idea falls outside of this research and

will not be further discussed here, the possibility for a physically destructive

reaction in response to compromise could yield added security. Although soft-

ware has the potential to destroy information, dedicated hardware can provide

autonomous, timely response not achievable through software. Research into

such dedicated hardware already suggests hardware-based destructive elements

such as the patent filed by Vatsaas and Erickson [76]. This patent suggests

responses to a stimulus such as providing an electrical charge and mixing chem-

icals to form a reaction. The proposed purpose of these responses is to “disable,

damage, or and/or destroy” the component being protected.
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The rest of this section develops justification for needing capabilities beyond

what software can provide and explore each of these advantages in greater detail.

It defines precisely what is required of hardware to overcome the vulnerabilities of

software and provide significantly improved performance.

3.2.1 Vulnerabilities of Software Security Systems. There are a number of

vulnerabilities inherent in software security. Two critical vulnerabilities are the in-

ability to guarantee real-time monitoring in standard commercial operating systems,

even on a multiprocessor system, and the inability to protect the integrity of the

security system once the production system has been compromised. The first vulner-

ability is evidenced by the fact that scheduling of processes on both uniprocessor and

multiprocessor systems does not make any guarantees on precise ordering or timing

of when a specific process gets time on a processor. Work such as Williams’ CuPIDS,

discussed in Section 4.3.2.2, changes this standard paradigm to guarantee monitored

processes run in lock step with the monitoring process [79] and overcome this first crit-

ical vulnerability of software security systems. Despite CuPIDS’ ability to overcome

this vulnerability, it cannot protect itself once the kernel has been compromised.

The specific point where software loses the ability to protect other software is

when faced with exploitation of a vulnerability in privileged code. Once an attack

can gain access through such a vulnerability, they have access to any piece of soft-

ware in the system and can modify both data and executable code. This allows for

changes in both user applications and the operating system itself, compromising the
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security of the security system itself. This can be accomplished through modification

to the security software itself or by modifying the operating system to interact with

the security software in another manner, such as reducing its privilege level. Note

that exploitation of vulnerabilities in privileged code provides two main avenues of

attack into the system. The more obvious method of attacking the security software

itself to degrade or interrupt its capabilities described above, but also corrupting the

information that is being sent to the security software.

This second issue is the general method that rootkits use to remain undetected.

They interpose themselves between processes by taking control when there is a library

function or system call. By controlling what information is passed back to the process

the rootkit can neutralize the security software without directly modifying it.

3.2.2 Advantages of Hardware. The vulnerabilities of software discussed

above show clear need for a security solution which can overcome these vulnerabili-

ties. Does hardware provide protection from these attacks? Not necessarily. Hardware

can provide this protection, but only if appropriately designed into the system’s ar-

chitecture. Two key factors in designing hardware which can enhance these areas of

security are where the security hardware connects to the system and how these con-

nections are made. Where it connect controls the trustworthiness of information as

well as influences the timeliness of detection. How the security hardware is connected

impacts the amount of information available to the security system and defines the

only avenues of direct attacks on the security system.
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3.2.3 Trustworthiness of Information. Although the need for accurate data

being received by the monitor is understood, there is no real framework for under-

standing what precisely is needed to accomplish this. Towards this end this research

defines a new axis categorizing the trustworthiness of the information being received

by the monitor. Although presented here towards the development of a hardware-

based security backplane system, this axis of trustworthiness stands as its own con-

tribution, which should be considered when attempting to provide an accurate and

secure monitoring device of any sort. This categorization sets important bounds on

what exactly affects the trustworthiness of the information.

Immediate Information (Figure 3.1) Immediate access to what is being monitored

insures the monitor is receiving true data. This immediate categorization rep-

resents a specific form of first-hand information where the monitor is inline,

directly between what is being monitored and its interaction with the system.

While this level of trustworthiness is certainly the most definitive method for

ensuring the monitor’s security, it leads toward a design with individual moni-

tors on every single hardware component, thus requiring a complete redesign of

all aspects of a system.

First-hand Information (Figure 3.2) This level of trustworthiness represents a

monitor that has direct access to the data being output from some device.

Depending on the specific design of the architecture being monitored, this level

of trustworthiness will likely be equivalent to Immediate Information. However,
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Figure 3.1: Immediate Information: Security Monitor placed inline between main
memory and the memory controller.

a shared bus architecture could be vulnerable to DoS exploit. This would be

accomplished in much the manner that someone would have trouble listening to

another’s conversation in a crowded room. For example, the PCI architecture

provides a scenario where data for each system is broadcast to all connected sys-

tems. If a security monitoring system is connected to the hub to take advantage

of this broadcast information it can be vulnerable to a DoS attack.

Figure 3.2: First-hand Information: Security Monitor placed on a shared bus,
vulnerable to Denial of Service from excessive traffic.
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With First-hand Information, or Immediate Information, a monitor is guaran-

teed to receive accurate data. The quantization from Section 2.3.1 shows that

the only possible way for a monitor with worse than First-hand Information to

guarantee it receives accurate data, is for every device which passes information

to the monitor to hold a trust rating of +1. The potential vulnerability pre-

sented of a DoS does not stop accurate data from being presented, merely floods

enough information to the monitor so that it is unable to interpret the correct

data. The speed of the monitor as compared to the speed of the monitored

information transmission plays a large role in this vulnerability and can even

overcome it if the monitor can process information faster than it can be trans-

mitted. If the monitor can process the incoming data at the same rate as the

device it is monitoring, its monitoring still remains accurate, since a DoS attack

on the monitor would effect the production system in the same manner. With

the pre-knowledge of its operating speed compared to what it is monitoring, a

monitor can recognize a DoS situation against itself as the same DoS against

the production system component.

Second-hand Information (Figure 3.3) This level of trustworthiness encompasses

any monitor that relies on some intermediary mechanism, such as hardware or

software components, to pass it the data it is attempting to monitor. Each

additional mechanism relied upon reduces the trustworthiness into third-hand

information, fourth-hand information, and so forth. Each level having a con-

tinually lessening degree of trustworthiness. For simplicity this categorization
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groups all levels of trustworthiness that cannot guarantee accurate monitor-

ing into this category of second-hand information. Unless any and all mecha-

nisms being relied upon to pass the monitor data can be guaranteed secure, this

presents an avenue of attack for corrupting the monitor be feeding it false data.

Figure 3.3 presents a simplification of Figure 2.2. It shows a PCI-based memory

acquisition tool, such as CoPilot [55], that must trust the PCI bridge, the south

bridge, and the north bridge; trust which Rutkowska’s research demonstrates

as unwarranted [63].

Figure 3.3: Second-hand Information:

Adapting the quantization of trust described in Section 2.3.1 to mechanisms

within a computer system demonstrates the compounding problem of the trust-

worthiness of Second-hand Information. By assigning a trust value in the range

[−1, +1] to any mechanism that must pass information in a system it shows that

the further removed from First-hand Information a monitor becomes the greater
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the degradation of trust. Looking at the situation of Rutkowska’s attack [63],

by assigning arbitrary values of trust to the PCI bridge, the south bridge, and

the north bridge of +0.9 each, that is all are 90% trustworthy, the aggregate

trust degrades to 0.729, that is the monitor can trust that it receives accurate

information with 72.9% confidence. This example assumes a fairly high level of

trust for each component and still shows significant degradation. With trust of

80%, the aggregate trust reduces to only 51.2%. Note also that this example

assigns trust values at a high granularity and does not deal with the aspect of

the trust of each component on something such as a north bridge chipset.

It is this previously undefined axis of the monitor’s security which is being

exploited by Rutkowska’s attack. This system incorporates this by attempting to

ensure that the system is monitored predominantly by devices capable of receiving

First-hand Information. Two important things to note about this axis of security are

that 1) all software based security systems on a uniprocessor system are inherently

unable to achieve a level of trustworthiness better than Second-hand Information since

they must rely on data controlled by the operating system and 2) even software based

solutions designed to operate within a multiprocessor system, such as CuPIDS [79],

must still rely on the trustworthiness of main memory and therefore receive no better

than Second-hand Information. In order to ensure accurate monitoring, the monitor

needs to have access to at least First-hand Information of the data being produced,

any intermediate devices provide the possibility of the data being manipulated before

reaching the monitor. Therefore at very least monitoring or interaction points are
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needed at each of the bridges in the system, i.e., any device that passes information

from one part of the system to another.

3.2.4 Timeliness of Detection. Another aspect of monitor placement is the

speed with which a monitor can detect an attack. One of the areas where the speed of

a device far exceeds the speed of the buses which pass information to and from it is the

processor(s). To accomplish real-time monitoring as defined in Section 2.2.3, monitors

will need to be closer to the main processor than system bridges will allow. One clear

example of why this is true is an attack which resides purely in cache. This section

describes a theoretical cache attack in Section 5.1.1.3. Such an attack will be able to

do its damage before detection, since detection is only possible with access to a present

view of cache. Even accepting near real-time monitoring capabilities, Kuperman’s δ

value will be significantly smaller for a monitor which is located on-chip.

3.2.5 Hardware Primitives. The manner in which monitors connect to the

system plays a significant role in enhancing both the security of the production system

and the security of the CSM system. By limiting connections between the monitor

and production systems and remaining within Mott’s Semi-hard security level, the

only avenues of directly attacking the security system are the hardware primitives

that bridge the monitors and production system. As long as no primitives allow for

modification of the monitoring system’s code, a greatly reduced attack footprint for

the security monitor is maintained. At the same time, these hardware primitives

can offer direct access to information previously difficult to obtain and even provide
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access to information not accessible through any software methods. Mott presents a

number of hardware primitives that can be leveraged in [48]. The two main areas of

interest for creating hardware security (and security in general) have been attempts to

monitor processes running on the production system, mainly through various memory

introspection techniques [11, 54, 23], and monitoring the incoming network traffic as

it enters the system [67,82, 22, 28, 26, 8].

3.2.6 What Do We Mean By Hardware Security? To this point we have left

the definition of hardware security somewhat up in the air. All computer systems con-

tain a mix of hardware and software and only a limited amount is accomplished with

purely hardware. To create a security system purely in hardware would significantly

hamper the flexibility and modifiability of such a system reducing the number of future

attacks a system could potentially respond to. Solutions such as a field programmable

gate array (FPGA) can be used to extend software flexibility into hardware, though it

may require performance tradeoffs and is not pivotal to this aspect of the discussion.

However, a pure hardware solution is not the goal when talking about hardware-

based security. The key component of hardware-based security is the communication

between the production system and the security system. Whether a specific monitor is

pure hardware, a FPGA, or software running on some combination of hardware which

remains separate from the production system hardware what qualifies a security com-

ponent as hardware-based is that connection back to the production system. Note

that an important result of this definition is that a hardware-based security solution
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requires physically separated memory. This is not to say that pure hardware or at

least FPGA solutions will not be required in some instances to provide fast enough

response. Areas where high-speed detection is crucial will almost certainly benefit

from pure hardware solutions. One predominant example of this is the network IDS

field where research has shown benefits from hardware solutions [28, 8, 73, 22].

3.3 Specific Requirements for Achieving Benefits from Hardware

So far this research has discussed the different advantages of dedicated hardware

for security solutions and discussed what is required to achieve these advantages. This

section explicitly defines these requirements for dedicated hardware. By designing to

these requirements, it is possible to design a comprehensive security solution that

achieves the advantages of hardware previously explored. The SHI(EL)DS architec-

ture discussed in Chapter V presents such a solution. These requirements are:

First-hand Information of all monitored information: This level of trusted infor-

mation guarantees accurate monitoring of what is happening in the system.

Without this level of trusted information security solutions are vulnerable to

being denied access to the information or even fed false information. This

vulnerability provides a route to compromise the effectiveness of the security

system, without the need to compromise the security system itself.

Dedicated Monitors for parallel, concurrent monitoring: To protect against po-

tential timing attacks monitors must be able to run concurrently with what

they are monitoring to allow the possibility guaranteeing of Kuperman’s real-
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time detection. Any monitor which does not run concurrently with its target

must ensure that it runs often enough to be impervious to timing attacks. In a

software-based solution this becomes infeasible due to the performance penalty

of continuous context switching. Dedicated hardware monitors remove the bur-

den on production resources and keep performance degradation to a minimum.

Explicit Hardware Communication between the production and security sys-

tems: By limiting communication between the production and security systems

to hardware pathways, avenues of attack upon the security system are reduced

to these explicitly defined pathways. Without modifiable communication path-

ways, the ability to corrupt these pathways is reduced. These limited pathways

provide a clear set of attack avenues which can be understood and protected.

Dedicated Storage of security code and data: Without dedicated, separate security

storage software communication pathways remain present in the system. These

communication pathways represent a significant avenue of attack to be exploited.

Any software-based separation becomes vulnerable to a root-level compromise

of the production system. Separate storage which cannot be directly modified

by the production system provides a more reliable method of protecting the

security code and data.

Dedicated Security Processor for controlling and coordinating the security mech-

anisms: Though not explicitly a requirement for gaining security capabilities, a

dedicated security processor is included here for the coordination and commu-

nication abilities it can provide. This separate processor will allow for a secured
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security control center when coupled with these other requirements. It will pro-

vide the ability to modularly add security mechanisms into a security backplane.

An important aspect of this ease of modularity is the ability to combine both

network IDSs and host-based IDSs into a combined, complete IDS which can

leverage combined knowledge from each to provide more flexible and effective

response.

3.4 Towards a Hardware Security Backplane

There are a number of key goals and factors which led to the creation of the

hardware security backplane system concept. This section presents and discusses a

number of these points that make the backplane concept the best solution with the

current state of computer system architectures. Though other systems do provide

some advantages, this system provides a more comprehensive and complete set of

advantages to other systems, discussed in detail in Chapter IV.

Backwards/Forwards Compatibility By creating the bulk of the security system

out of band, with only hardware primitive monitors as the connection, this

architecture allows for little to no change to the software and firmware on a

system. This means that a system equipped with this security backplane would

be able to run the same code as a standard system without a security backplane.

This also means that future development does not need to account for the

backplane’s existence, thus providing a high level of transparency to developers.
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Modularity This backplane design provides an out-of-band system which connects

to the production system only through specific monitored points. The backplane

is designed to be capable of operating with only a subset of these monitors

active. If a specific system only has access to monitors of the memory address

allocation within the north bridge and the memory address requests on the PCI

bus it can provide simple comparison analysis to ensure PCI devices receive

the memory address they requested. If a specific system also has access to the

network interface, it can provide the ability to shut down this system’s network

communication when it detects that the system is potentially compromised.

It also provides for a method of linking the backplanes from a number of sys-

tems together in a network that is almost completely separate from the global

Internet like that of Figure 5.41. This creates a system which can be leveraged

in numerous ways. It can operate on a single or small number of systems, such

as computers serving as the gateway into an internal network or providing ex-

ternal services (webmail, remote desktop, etc.). It can also operate as an entire

network backplane to a server farm where individual backplanes can communi-

cate potential threats throughout this network and control access to potentially

compromised machines. This network level modularity and ways to leverage it

for numerous security enhancements are discussed in Section 5.2.2.2.

1The only path of attack from an external network to the backplane network would be through
a specific production system, through the hardware monitors of that system, through that specific
security backplane out into the rest of the security backplane network.
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Minimizing Impact By minimizing changes to the production system, redesign

costs are reduced. This includes both the time and money required for re-

design. The less modification required to the production system, the more

independent development of the production and security systems can remain.

The other aspect of impact is that of system performance. High-speed areas

of system architecture will need careful design to minimize fanout and possible

gate delays so as to keep these components operating within the correct clock

speed. In some cases, the impact can be reduced to almost zero by creating

a monitor which plugs into the system inline with a system bridge. In other

cases, significant impact on the production system design will be unavoidable

such as the inclusion of a monitor which would give First-hand Information

of a system bus, such as the IntelR©Front Side Bus (FSB) [30], to the security

monitor. Determining where monitors are placed within a system relies on a

cost-benefit analysis of the importance of information gained versus the extent

of the impact to the system. In cases where the impact is insignificant, monitors

which offer only a small benefit can still be realized. In those cases where the

impact is greater, such as First-hand Information capable monitors of proces-

sor(s) and/or memory, the hardware primitives that can be monitored will need

to be limited to only those which provide the optimal benefit.

Fits Design Requirements As discussed in Section 3.2, to create a hardware-based

security system with a minimal attack footprint, the operation of the security

system must be separated onto different hardware than the production system
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maintaining only the necessary hardware primitive connections. This backplane

design fulfills this need. The backplane architecture incorporates each of the

requirements presented in Section 3.3. Since separate hardware is desired for

the security system, this work attempts to only modify the production system

with the inclusion of monitors. Section 5.1 explores critical monitoring points

throughout the entirety of production systems and highlight specific hardware

primitives to aid in this monitoring.
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IV. Review of State of the Art Computer Security Solutions

H
aving presented requirements for hardware-based security solutions to over-

come the vulnerabilities of software solutions, we now review the state of

security solutions. We look at software, virtualization, and various solutions which

include hardware to varying extents. We evaluate these solutions against the different

advantages that the use of hardware provides. Although all of these advantages are of

interest, the Reduced Avenues of Attack, provided by separation of the security system

and the Trustworthiness of Information are two areas where most current solution

fall short. These solutions often do not manage to achieve First-hand Information.

When they do they still rely on the production system’s memory, leaving this avenue

of attack open.

4.1 Software Intrusion Detection Systems

Software security solutions abound both in the commercial market [43,52,66] and

the academic research community [78,25]. All of these solutions are vulnerable to the

weaknesses described in Section 3.2.1. For all their strengths as total system security

or network security systems, they are unable to guarantee the Trustworthiness of

Information and are vulnerable to any compromise of the production system. Despite

these weaknesses, there are a wealth of useful approaches and techniques that have

been explored in software. As explained in Chapter III, hardware in security does

not necessarily replace the need for software, but provides improved security for the

security system and new information to be used by the security system. This section
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presents a select few software-based solutions that can be adapted to work with the

SHI(EL)DS architecture. Numerous other software security systems exist which also

share the potential to be adapted to the security architecture developed in Chapter V.

4.1.1 CDIS. Williams et al. develop a computer defense immune system

(CDIS), which uses an artificial immune system (AIS) to address two main concerns

of ID: the ever changing nature and the enormity of the network landscape [80]. This

research is designed to augment traditional signature-based detection systems. They

choose to implement an AIS due to the similarities between IDS structure and the

biological immune system of humans. They use a process called costimulation to re-

duce the false positive rate by only discarding incoming packets if multiple antibodies

detect it as non-self. The term non-self refers to any packet that is not considered

acceptable network traffic.

4.1.2 jREMISA. Haag et al. present work on a multi-objective evolution-

ary algorithm (MOEA) inspired by an AIS that has the name jREMISA (java-based

Retrovirus Evolutionary Multiobjective Immune System Algorithm) [25]. This work

combines work by Edge et al. [16] and Coello and Corts [14]. Their work leverages

the concepts of AISs and MOEAs to create an adaptive IDS which attempts to evolve

antibodies which attempt to maximize the detection of True Positives while mini-

mizing False Positives, as defined in Section 2.2.3. In Kuperman’s notation a True

Positive is defined as x ∈ B, D(x) = true. That is, some event, x, which is malicious,

is detected to be malicious.
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4.2 Virtual Machine-based Security and Separation Kernels

The virtual machine monitor (VMM) was first developed in the late 1960s as

an approach to multitasking on mainframe systems, and with the advent of modern

multitasking OSs fell out of use through the 1980s and 1990s [60]. With the renewed

and increasing popularity of the virtual machine (VM) in today’s market, for both

platform flexibility and security, research has begun to focus on the strengths, vul-

nerabilities, and feasibility of using VMs for security purposes. This section explores

elements of this research.

4.2.1 Virtual Machine Monitor Description. There are a number of security

enhancements inherent in the design of VMMs [58]. A VM running a mainstream OS

on top of a VMM has an extra layer of abstraction and protection. If the OS on this

VM is compromised by an OS specific attack, only that particular VM is corrupted.

An attack meant to compromise the entire system must be designed to bypass the

initial OS and exploit a vulnerability in the VMM and attack the underlying OS if

one exists. Robin and Irvine describe two basic classes of VMM: Type I VMMs and

Type II VMMs. Type I VMMs operate as the direct link to the hardware, functioning

as a stripped down OS and allocating resources to the different VMs running on it.

A Type II VMM runs on top of a standard OS as an application.

4.2.2 Rootkit Defense. Medley presents research into using hardware as-

sisted virtualization (HAV) to protect against rootkits [45]. The core of this research

revolves around creating a small dedicated Type I VMM which is simple enough to be
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designed securely. This VMM secures system resources by creating a new operating

mode. Using HAV, Medley proposes a system which leverages the new advantages

provided to remove most of the OS operation from root level without significantly

impacting system performance.

4.2.3 Terra. Garfinkel et al. present a Trusted Virtual Machine Monitor

(TVMM) architecture which aims to allow a variety of applications, with varying levels

of security needs, to operate concurrently on a general purpose computer platform [19].

This TVMM, called Terra, operates as a Type I VMM. One of the key concepts which

separates Terra from a standard VMM is the inclusion of both Open-box VMs and

Closed-box VMs in the architecture design. An Open-box VM is the standard concept

of a VM with the VMM and underlying OS aware of the activities within the VM. A

Closed-box VM attempts to operate as a complete black box with regards to the rest of

the system, denying access to the underlying OS for inspection or modification. This

is done through encrypting all memory and storage for the Closed-box VM. Terra also

includes a management VM which provides the ability to fine tune how different VMs

are granted access to hardware. Garfinkel et al. identify a number of key strengths

to their architecture:

Isolation Applications on different VMs remain well isolated.

Extensibility Applications with significantly different security requirements can be

implemented concurrently.

Efficiency Virtualization has shown to have negligible impact on performance [27].
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Compatibility VMMs can run mainstream OSs such as Windows and Linux.

Security The simplicity of VMMs compared to an OS allows for the ability to have

higher confidence the security of the software.

They also identify three features which they claim are unique to their Terra

architecture. These features are described here:

Root Secure The inclusion of Closed-Box VMs, as described above, provide the

ability to run code that even the root administrator does not have access to.

Attestation Terra provides the ability to cryptographically authenticate a VM as

the source of information to other network systems. This authentication, called

attestation, provides information about every aspect of the source of information

from the hardware all the way up the software stack of the system. This ability

allows systems receiving information, with the ability to decrypt this technology,

from a Terra equipped system to make their own, informed decision on the

trustworthiness of the data received.

Trusted Path In order to build secure applications you must have a trusted path [42]

which Garfinkel et al. claim their TVMM provides.

4.2.4 Separation Kernels. Rushby presents research into separation kernels

which are a variant of VMMs [61]. The key differences of the separation kernel are

the ability of the kernel to provide varying hardware profiles to the different regimes

(Rushby’s term for the VMs) and the ability to emulate specific, limited hardware
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communication pathways. From this description, the Terra TVMM discussed above

is very similar to an advancement of the basic separation kernel concept.

4.2.5 Virtual Machine Monitor Vulnerabilities. There are a number of key

vulnerabilities in the design of VMMs. First and foremost, the VMM uses the same

hardware, so a compromise of any vulnerability in the VMM design can compromise

the entire system and all processes running on it. Second, new architectures allow

VMs direct access to hardware opening up avenues of attack which can bypass the

VMM, even if the VMM remains secure. Lastly, although not a vulnerability of

VMMs precisely, the possibility of virtual-machine based rootkits (VMBR) has been

demonstrated by King et al. with their SubVirt concept [34]. Rutkowska also presents

a potentially malicious VMM using AMD’sR©virtualization technology [64].

While many VMMs claim to improve their self-security (over that of a standard

OS) through simplifying the core kernel of code, none of them claim to achieve guaran-

teed secure operations. By shrinking the size of the VMM as compared to a standard

OS they are reducing the vulnerabilities, not eliminating them or even clearly con-

straining what precisely those vulnerabilities will be. In each of the VMM solutions

developed above, a compromise of the core of the production system still leaves the

security system vulnerable. Terra provides a high level of security between different

VMs through emulation of hardware communication pathways between them. This

security becomes compromised if the TVVM or the controlling VM become compro-

51



mised. The system developed in Chapter V moves this protection mechanism into

actual hardware, further strengthening its security.

Hardware assisted virtualization (HAV) provides a number of performance ad-

vantages for running a VMM on a system. Both IntelR© [20] and AMD R©have [71] have

released architecture modifications to include HAV in order to support the growing

trend in virtualization. Although HAV provides performance advantages, it also opens

up additional avenues of attack. With greater process control of hardware, malicious

code which corrupts a process can achieve its intended affect more directly.

VMMs can also be used in a malicious manner. King et al. present their SubVirt

system which attempts to install a VMM underneath a targeted OS, encapsulating this

OS as a VM running on their VMM [34]. This virtual machine-based rootkit concept,

allows for their attack to very effectively hide from the production OS, while having

a high level of visibility and control over the now compromised system. Any software

security system operating on the targeted OS will have little to no ability to detect

this VMBR or defend against it. Properly designed hardware-based solutions can

detect against an attack of this nature, since it’s access to operations will not have to

pass through this VBMR to monitor the system, like a software-based solution would

have to.

Rutkowska demonstrates a hypervisor (VMM) that uses AMD’sR©Secure Vir-

tual Machine (SVM) to co-opt control of a system by shifting the host OS into a VM

running on her thin hypervisor [64]. This hypervisor, called Blue Pill, is only respon-
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sible for limited control of the OS. This allows Blue Pill to have very little impact

on performance and reduces the visibility of this hypervisor to detection techniques

possible detection techniques. Since a virtualization based rootkit does not modify

the BIOS, boot sector, or system files of the original host OS, Rutkowska claims that

Blue Pill, and other Type III Malware, are virtually undetectable. She admits that

it is possible for a system running on top of a hypervisor or VMM to detect that

this is true. She points out that detecting that there is a hypervisor underneath the

OS does not mean that one can detect whether or not it is a malicious hypervisor.

She also claims that even a complete kernel integrity scanner that could verify both

the static and dynamic regions of the kernel and able to detect Type I Malware and

Type II Malware could not detect her Blue Pill. Even with this impressive theoretical

verification tool, Type III Malware remains undetectable.

4.3 Hardware-based Intrusion Detection Systems

4.3.1 PCI Based Devices.

4.3.1.1 Independent Auditors. Molina and Arbaugh present indepen-

dent auditors that check the integrity of the filesystem to determine if an intrusion

has occurred [47]. A PCI card based coprocessor logs all changes to the filesystem

and performs auditing calculations in a personal computer architecture so as to en-

sure filesystem integrity. A policy file provides the basis for defining what files and

parameters are to be audited providing useful computer forensics capabilities. There
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work defines eight properties which must be accomplished by a device for it to be

considered an independent auditor

Unrestricted Access The auditor must have unrestricted access to devices to be

audited and used by the auditor.

Secure Transactions The auditor must must be able to reliably and securely re-

trieve data from the audited system.

Inaccessibility The audited system cannot have access to the auditor’s internal

components.

Continuity The auditor must begin running at system startup when the system is

still in a trusted state and remain in operation as long as the system is operation.

Transparency The auditors access to the system’s devices should be as transparent

as possible.

Verifiable Software The auditor’s software must be verifiably trustworthy.

Non-volatile Memory The auditor must be capable of maintaining information

through power failure or reboots.

Physically Secure The auditor needs to be physically secure.

This list of properties provides a good list of important elements for any hardware-

based security system. These properties, either in the form listed above or a similar

focus, are incorporated into the hardware security backplane system. These inde-

pendent auditors provide an interesting set of capabilities; unfortunately they fail to
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meet their second property, reliably and securely retrieving data from the audited

system, in their system design which Rutkowska’s attack demonstrates [63]. This

failure is in large part due to a lack of understanding in the trustworthiness of their

information source. By defining clearly this aspect of a security monitor’s security, as

Section 3.2.3 does, this research hopes to rectify this oversight. These independent

auditors do manage to enhance their own security through using limited hardware

pathways to connect to the production system.

4.3.1.2 CoPilot. CoPilot [55], developed by Petroni et al., is a coprocessor-

based IDS. This IDS monitors the integrity of the host processor’s physical memory

space and looks for changes such as the installation of known rootkits which com-

promise the host processor’s security. They assert that a coprocessor must meet six

criteria to monitor a kernel at runtime effectively:

1. Unrestricted memory access

2. Transparent to what is being monitored

3. Operate independently of what is being monitored

4. Capability to process large number of operations

5. Sufficient memory resources to contain image of clean host

6. Secure reporting of security system state

CoPilot attempts to meet these requirements as a peripheral component inter-

face(PCI) device. As a PCI card, its memory access is coordinated through the CPU
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and peripherals on the system buses, allowing CoPilot to monitor memory without

explicit communication with the production processor. This places CoPilot within

Mott’s tight-hard security category for security of the monitor. Despite this, Sec-

tion 2.2.5 shows that in can be rendered ineffectual because of its reliance on Second-

hand Information. While the integrity of CoPilot is not compromised by Rutkowska’s

attack, its ability to monitor memory is neutralized, producing a net effect similar to

an actual compromise of the CoPilot system.

4.3.1.3 Tribble. Carrier and Grand present another hardware-based

memory acquisition tool which also resides on the PCI bus [11]. This device provides

very similar capabilities to CoPilot by capturing volatile memory. An important

requirement of their system is that it must be installed when the system is in a

known good state so that it can establish a baseline for the system.

Since Tribble is a PCI-based device, it is yet another example of a hardware

security device which is vulnerable to Rutkowska’s attack, described in Section 2.1.3.1,

due to its inability to capture better than Second-hand Information. Tribble provides

itself with a high level of security by limiting communication pathways from the

production system to hardware-based monitors.

4.3.2 Complete Systems with Dedicated Hardware.

4.3.2.1 APHID. Hart presents an Anomaly Processor in Hardware

for Intrusion Detection (APHID) which uses co-processing ID to offload the security

56



processing burden [26]. This research uses tightly coupled monitors with anomaly-

based detection to defend against attacks such as distributed denial of service (DDoS)

and buffer overflow attacks.

4.3.2.2 CuPIDS. Williams implements a CoProcessor Intrusion De-

tection System (CuPIDS) which leverages a processor in a multiprocessor system to

act in lock step with the normally functioning processor as the coprocessor [79]. Using

the uniform memory access (UMA) multiprocessor model, this system accomplishes

ID and security policy compliance monitoring (SPCM). Williams’ design allows for

the monitoring processor to access virtual memory, since it is tightly coupled to the

production processor, located at the same logical level. This access provides the

monitor with information of both kernel-space and user-space, where the PCI-based

solutions discussed previously can only access kernel-space.

This architecture requires an OS which is not compromised, since CuPIDS runs

within the framework of a single OS. The main functionality of CuPIDS are the process

pairs known as the CuPIDS Production Process (CPP) and the CuPIDS Shadow

Process (CSP). In order to minimize the performance impact, the CSP monitors the

CPP only at critical points which are inserted into the CPP based on events that

can be used to detect intrusion. The CSP is initiated first, followed by the CPP with

”hooks” from the CSP into the CPP’s virtual memory.

CSPs can be designed to utilize both anomaly-based detection and specification-

based detection. Detection happens quickly compared to other software-based security
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systems and has the ability to notify of a CPP compromise or block the CPP from

further execution. Due to it’s fast detection time and access to the CPP’s virtual

memory there is the potential for a block of memory to be copied when dangerous

system calls are made, so that damage done by a potential attack can be repaired.

The two biggest shortcomings of the CuPIDS architecture Williams’ identified

are performance degradation and vulnerability when the OS is compromise. Williams’

estimates a 15% performance hit from that of a system not being monitored. This

performance degradation is measured through a comparison of clock time, user time,

system time, and throughput. Due to CuPIDS running on a single OS, compromise

of the OS leaves the entire system vulnerable to compromise.

Despite being viewed as a purely software solution, the manner in which CuPIDS

is developed takes the first steps toward dedicated security hardware, by co-opting

a processor for security use. When a CSP is running, that processor is dedicated to

security purposes. Although it begins down the path toward hardware security, it

shares the same OS and the same memory as the production system. This leaves it

vulnerable to compromise if the production system is compromised.

Although as a software solution, CuPIDS cannot achieve anything better than

Second-hand Information, it relies on significantly fewer mechanisms than PCI-based

monitors. The tradeoffs between the two in terms of their own security is interesting,

since the PCI-based monitors receive Second-hand Information from a number of

hardware mechanisms, only one of which has a demonstrated compromise against
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it. When the CuPIDS system has a CSP set up and running it has hooks into the

CPP’s memory and must rely on the same hardware that the CPP is relying on for its

information. This monitoring however, only maintains an advantage over PCI-based

memory monitors with the assumption of a OS which has not been compromised, this

remains the most significant weakness of Williams’ work. Leveraging the other design

elements of CuPIDS while overcoming the limitation of its reliance on the production

OS will lead towards a formidable security system.

4.3.2.3 Security Enhanced Chip Multiprocessor (SECM). Shi et al.

present a similar IDS to CuPIDS with the most important difference being that SECM

includes a separate operating system for the monitor [65]. SECM also shares the Level

2 L2 Cache which allows the security system to monitor every production processer

request for data from memory at the cache level.

With a shared L2 Cache, SECM achieves Immediate Information of processes

executing on the production processor. Although SECM’s use of hardware enables

it to guarantee that it receives accurate information from production processes, the

security system code is still stored on the same hardware as the production system

providing a large avenue of attack. SECM attempts to reduce this vulnerability by

keeping the security kernel as compact as possible and reducing the privileges of the

production system. Since SECM has not been implemented in hardware, or compared

against a system that is not being monitored, the performance penalty of using this

security solution has not been fully explored.

59



4.3.3 Network Hardware Intrusion Detection Systems.

4.3.3.1 Efficient Packet Classification Using FPGAs. Song and Lock-

wood present research into combining Ternary Content Addressable Memory (TCAM)

with the Bit Vector (BV) algorithm to provide multiple matches at gigabit per sec-

ond (Gbps) speeds from the classifier of their network intrusion detection system

(NIDS) [67]. Their system, called BV-TCAM, uses separate, dedicated TCAM which

allows for the efficient execution of their matching algorithm. This system provides

continuous monitoring of network packets, but still requires access to information

stored in main memory. If their system’s access to main memory is degraded or de-

layed, the system becomes significantly less effective. Though not explicitly stated in

their work, their hardware seems designed to receive First-hand Information, allowing

it to guarantee it is monitoring the actual network packets entering the machine.

4.3.3.2 FPGA-based Content Addressable Memories. Bu and Chandy

present a NIDS which uses dedicated content addressable memory (CAM) to achieve

processing of incoming packets at 2 Gbps [8]. Their system uses Signature-based De-

tection by loading signatures into a CAM array and passing incoming packets through

one bit at a time. They use a keyword match array that keeps track of bit matches and

signals when full word matches occur. This process evaluates incoming packets within

a linear multiple of input stream size. This multiple is a constant dependent on the

number of keywords. Their work presents a clear example of dedicated hardware pro-
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viding significant improvements in the detection time of malicious packets, achieving

detection speeds more than capable of keeping up with today’s gigabit networks.

4.3.3.3 Reconfigurable Hardware-based String Matching. Hutchings

et al. present research into using FPGAs to perform string matching for network

ID [28]. Their research leverages compiling regular expressions into nondeterministic

finite automata (NFA) and implement directly onto FPGAs, instead of first converting

the NFA into a deterministic finite automata (DFA).

Their research presents impressive results compared to software-based network

ID, especially as the size of the regular expressions for string matching grow in size.

They manage to maintain relatively moderate CPU utilization and a fast response

time regardless of packet size, compared to software solutions which require increasing

levels of CPU utilization and continually degraded response time. The benefit that

hardware grants this security solution is predominantly a matter of the timeliness of

detection and the speed of response.

4.3.4 Security Mechanisms Assisted By Hardware.

4.3.4.1 Real-time, Parallel ID via Hardware-based Architecture. Mott

et al. present research into a number of hardware primitives designed to aid in real-

time, parallel ID [49]. Their research presents extensions of the CuPIDS architecture

focusing on improving real-time monitoring of the production processor unit (PPU)

through parallel ID using a shadow monitoring unit (SMU). The SMU snoops the FSB
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and directly monitors PPU state information. It also provides for direct control signals

back from the SMU to the PPU. Their early prototyping work is developed on FPGAs

with the envisioned solution designed to use either FPGAs or non-reconfigurable

hardware with dedicated software. Mott details a number of hardware primitives in

his thesis to be used for gathering context-rich state information [48].

Multi-context Hardware Monitors Provides the monitor the ability to distin-

guish between processes executing on the PPU.

Execution Policy Enforcement Module Designed to prevent malicious code from

executing.

Peripheral Access Control Enforces access to peripherals, keeping processes from

accessing unintended peripherals.

Asymmetrically Partitioned Main Memory Grants the SMU access to the PPU’s

memory while preventing the PPU from accessing the SMU’s memory.

MMU Co-opting Provides visibility into a process’s virtual memory space.

Monitoring Using Multiple MMUs Extends MMU Co-opting to be able to mon-

itor the virtual memory of processes not executing.

Though Mott’s work does not explicitly state the need for First-hand Informa-

tion, many of these monitors are designed to achieve it. Asymmetrically Partition

Main Memory starts down the path of dedicated storage for the security system,

though since it appears to be accomplished through permissions, not physical separa-

tion, there is still a potential avenue of attack on the security system exposed. This
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work has limited dedicated processing power and uses explicit hardware communica-

tion between the PPU and the SMU. Mott’s work meets most of the requirements

outlined in Section 3.3 for hardware-based security to provide superior performance

over purely software-based solutions.

4.3.4.2 Hardware-based Stack Protection. Exploiting weaknesses such

as a buffer overflow, one very common form of attack involves rewriting information

on the stack, such as a return address [53]. By overwriting a return address on the

stack with an alternate address, an attack can execute malicious, injected code. Lee et

al. propose a secure return address stack (SRAS) which is designed to defend against

this form of attack [38]. Another hardware solution, SmashGuard, is described by

Özdoganoglu et al. [54]. Both of these stack protection techniques utilize separate,

dedicated hardware storage which allows for increased security of the monitoring sys-

tem, since the production system cannot write to the SRAS. However, these systems

include the ability to store information in main memory if their dedicated memory is

unable to handle the depth of the return address stack. This provides a potential av-

enue of attack to systems using these security methods. By ensuring the stack grows

large enough to force a write to memory, malicious code can exploit this vulnerability.

These solutions gather Immediate Information, which guarantees that the monitor

received accurate data from what is placed onto the stack. Some form of hardware-

based stack protection should be included in any complete security solution. One of

these or a tailored solution provides an excellent modular addition to the architecture
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developed in Chapter V. To increase the strength of their security, their overflow

storage should be located in dedicated security system memory, not the production

system’s main memory.

4.3.4.3 Microinstruction-based Monitoring. Ragel et al. present re-

search into modifying microinstructions that implement high risk instructions [56].

This research leverages the microinstructions of the instruction set architecture (ISA).

These microinstructions are not accessible to the software programmer. Since multiple

microinstructions are used to achieve a single instruction from the ISA, modification

of the microinstructions is possible while maintaining ISA compatibility. They present

a number of examples such as buffer overflow attacks, fault injection attacks, and out

of bounds memory address access.

Buffer overflow attacks are prevented through a hardware-based mechanism

similar to that described in Section 4.3.4.2. Instruction path fault injection attacks

are monitored by comparing the instruction memory to what is actually fetched. Data

path fault injection attacks are prevented via a first in first out (FIFO) buffer which

stores the write-back address from the instruction decode state and compared to the

actual write-back location. Out of bounds memory address access prevention through

comparison against a particular memory range.

Ragel et al. report an average performance penalty of 1.93% on applications

tested and no greater than 15% overhead to area on-chip. They measure this per-

formance penalty as the percent decrease of the clock speed. Their research can po-
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tentially provide Immediate Information for specific aspects of processes on the CPU

which they monitor. It involves separation of monitoring hardware and uses the mod-

ification of microinstructions to make the modification transparent to the ISA. Their

system also implements a small amount of dedicated storage for the security system.

While the system makes a number of improvements through it’s dedicated hardware,

it requires significant change to the architecture on-chip and does not interface with

the rest of the system. Also, the modified microinstruction approach detects and

prevents processes from behaving other than they way they were designed. If the OS

becomes compromised, processes can be modified so that their new intended purpose

has malicious consequences without triggering a response from this security system.

4.3.4.4 Control Flow Monitoring. Zhang et al. present research into

control flow monitoring at the instruction level through modified hardware [83]. Their

research uses two main methods for monitoring proper branching. The first examines

the text of a process to understand all possible branch targets. The second involves

examining a process executing in a trusted state. Zhang et al. expand their work

to include monitoring of multiple branches for anomalous behavior detection among

other improvements [84].

The main drawback to these security efforts is the reliance on training the system

to each process that is to be monitored.

Arora et al. also present research into this field [4, 3]. Their work focuses on

monitoring the program counter PC, the instruction register IR of the instruction
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which is finishing, and the status information from the control unit of the pipeline.

They provide two control signals with their work: a stall and an invalid signal. They

aim their research at providing protection to three key properties:

1. Inter-procedural control flow

2. Intra-procedural control flow

3. Integrity of the executed instruction stream

Each of these types of monitoring receives Immediate Information of the PC, IR,

and control unit status through the use of dedicated monitors. The system also

incorporates both dedicated storage and utilizes hardware communication pathways

to gather data.

4.4 Non-detection Oriented Computer Security

All of the discussion so far has focused primarily on intrusion detection, i.e.,

response to an attempted attack upon the system. Another field of computer security

focuses explicitly on providing trusted modes of execution for software processes. The

most notable in this field is the IntelR©Trusted Execution Technology, formerly known

as LaGrande [32,31,33]. Trusted Execution Technology offers a number of capabilities:

• Protected execution and memory spaces to process sensitive data

• Sealed storage to protect data such as encryption keys

• Protected Input and Graphics through encrypted communication

• Attestation to provide assurances that a process is correctly invoked
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• Measured launch allows a higher level of assurance for platform configuration

verification

They make use of a Trusted Platform Module (TPM) that provides dedicated

storage for encryption keys and establishes the root of trust for the system for attes-

tation purposes. While the Trusted Execution Technology provides many benefits to

the security of a system by providing dedicated storage, the technology is not designed

to handle ID tasks. Trusted Execution Technology only protects code developed to

utilize it, which leaves systems open to vulnerabilities from software that has not been

re-engineered to do so. Since protected code must be developed and employ the new

capabilities correctly, systems are also vulnerable to inexperienced programmers not

fully understanding what is required to invoke the Trusted Execution Technology and

provide their code with a trusted environment. Our work attacks security from the

detection and response angle, attempting to provide security to all processes running

on a system, regardless of how they were developed. This helps to remove the burden

of security from the average programmer.
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V. SHI(EL)DS Design

T
his chapter develops the Secure Hardware-based Intrusion (Elimination, Lim-

itation, and) Detection System (SHI(EL)DS) architecture, exploring locations

where security hardware can strengthen the security of the system. This discussion

remains high-level, focusing on general architecture. It shows advantages which can

be gained through this architecture and ties the decisions back into the discussion of

the benefits of including dedicated hardware in security solutions from Chapter III.

Although numerous solutions were discussed in Chapter IV with varying levels of

hardware involvement, this architecture presents a complete architecture, combin-

ing strengths from numerous different security solutions and attempting to overcome

weaknesses present in each. Although the SHI(EL)DS architecture does not represent

an impenetrable security system, it brings significant progress to a number of key

vulnerabilities that plague current software solutions.

Dissecting our SHI(EL)DS acronym for understanding what at first seems to

be nothing more than semantic trickery to create a good acronym yields key insight

into the goals and capabilities of our proposed system. The secure hardware-based

intrusion detection system all holds clear meaning related to our research efforts: we

are attempting to utilize hardware to create a more capable and secure IDS. Though

the term intrusion prevention system (IPS) is commonly used to refer to systems

which do more than simply detect intrusion, the term prevention tends to indicate

that security systems will proactively defeat all threats. We use the term elimination

to include both proactive and reactive defeat of threats. An important capability
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that our security backplane attempts to provide is the ability to deny a corrupted

peripheral access to the system or even entire corrupted system from access to the

rest of the security backplane equipped network. This limitation of an intrusion which

cannot be completely eliminated, potentially allows a system to remain operable while

containing the intrusion.

5.1 Critical Monitoring and Interaction Points

This section explores critical monitoring and interaction points in IntelR©and

AMD R©systems since they are two of the most dominant hardware architectures de-

ployed today. Despite the specifics of other architectures being different, the more gen-

eral concepts can still be extrapolated from this research. Although much of the overall

architecture design between IntelR©and AMD R©are very similar, there are a number of

key differences pertaining to AMD’sR©development of the HyperTransport BusR©. This

section begins by discussing the critical locations in the IntelR©Architecture and then

present the differences required by AMD’s HyperTransport BusR©. In the long term,

the AMD R©focused information will be more representative of how this system would

be deployed, since Intel is moving away from their current shared bus architecture

towards an architecture similar to that of AMD’s HyperTransportR© [29].

Before identifying critical points, criteria for choosing what effective monitoring

and interaction points should accomplish must be defined. Ideally, all information

within a system would be monitored in real-time and guarantee that what each device

is doing is what the monitor sees. Although this can be accomplished by modifying
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every single component within the system architecture, it would be unrealistic in

terms of both the cost and the obtrusiveness into the system. A number of key

factors important to identifying critical points are presented here.

1. Value and accuracy of monitored information

2. Timeliness of detection

3. Obtrusiveness into operation

4. Impact on performance

5. Cost of integration

Each of these key factors maps back to the advantages gained through hardware

and the justification for developing a security backplane architecture. New hardware

primitives must meet the criteria for presenting trustworthy data, by providing at

worst First-hand Information about the system and that this information can be

leveraged to increase the capabilities of the security system. As these goals are pur-

sued, care must be taken to examine the tradeoff between what a monitor provides

and the negative impact it has on the system. Any interaction point which modi-

fies the general operation of the production system or presents a serious performance

degradation must present substantial gains to justify inclusion. Large changes to the

operation of current devices in the system can quickly make this too device specific

and cost prohibitive. If this system causes a significant performance degradation there

will be great resistance to adoption of this system since very few people are willing
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to trade lower performance for increased security unless there is a large disparity in

favor of the increased security.

5.1.1 Basic PCI-Express Era Intel System Architecture. Figure 5.1 presents

a general layout of a desktop/server computer architecture. Although the specific

details of what devices are attached in a system vary greatly, the general architecture

remains fairly consistent.

Figure 5.1: General Intel Architecture with PCI-Express

5.1.1.1 Northbridge. The northbridge of a system connects the pro-

cessor(s), memory, and PCI Express slots. One of its key components is the memory

controller. It also connects the rest of the peripherals attached to the system in-

directly through the southbridge. Any communication between the processor(s) or

memory and the rest of the system passes through the northbridge. This means that

in order to gather First-hand Information from either the processor(s) or main mem-
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ory monitors cannot wait until after this data has passed through the northbridge to

monitor it.

5.1.1.2 Southbridge. Likewise, the southbridge connects I/O devices

and other peripherals such as PCI devices back to the rest of the system. Although

the potential impact on the system is less since these devices do not have as complete

access to the core of the system, the potential exists for the southbridge to corrupt

information being passed to or from any of these peripherals.

5.1.1.3 Processor. Above cited communications between the proces-

sor(s) and the rest of the system as partial reasoning for the northbridge as a crit-

ical monitoring point; however, due to the ability for malicious code to exist solely

within cache, even monitoring the northbridge does not provide First-hand Informa-

tion about the processor(s). Petroni et al. allude to the possibility of such an attack,

but do not explain how such an attack would be accomplished [55]. Although no

known instances of such an attack exist, the possibility for it does exist. If an at-

tacker were to successfully inject a compact piece of code, which contained a polling

loop to keep its utilization high, into the instruction stream it is potentially possi-

ble to keep this code in a processor’s cache at all times. This code would remain

their so long as it can maintain control of that processor [77]. To keep this attack

undetected, another device, which does not participate in cache snooping, must re-

pair the memory location that first allowed the attack. A peripheral can make this

memory change without trigger a cache flush. This erases the evidence of the attack
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from memory, hiding it’s existence from current memory monitors. While flushing the

cache will defeat this exploit, excessive flushing of the cache will create a significant

performance degradation and must be balanced against the potential benefit. Even

if only temporary, this theoretical attack demonstrates that at least until the cache

is flushed, the northbridge does not receive accurate information.

In addition to this issue, the speed difference between the processor(s) and the

northbridge provides windows of vulnerability even if lack of First-hand Information

were not an issue. Furthermore, as Mott discussed [48], there are numerous pieces of

information which can be useful for security purposes which are not currently made

available off chip such as the program counter and instruction trace.

5.1.2 Differences in AMD Systems. The critical difference in AMD’s archi-

tecture is the Hyper Transport (HT) Bus. HT changes the pathway for communica-

tions between the processor(s) and main memory, shifting northbridge functionality

on-chip. The memory controller being on-chip allows for greater speed and integra-

tion. What is important to note here is that the need for on-chip monitors is even

more prevalent within an AMD system since monitoring of the memory controller is

crucial for maintaining First-hand Information of memory.

5.2 Security Backplane Architecture

Having explained the need for dedicated security hardware and presented the

advantages of a security backplane system over other hardware options in Chapter III,
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this section presents the details of the backplane architecture. This discussion begins

at a high level, leveraging the discussion of critical monitoring and access points, to

identify the general areas which this system will connect to a production system.

Figure 5.2 presents this overall system design with red shadows representing loca-

tions where monitors and interaction points are located and red lines representing

communication paths between the elements of the security backplane.

Figure 5.2: High-level Hardware Security Backplane Architecture Implementation
Design

5.2.1 SHI(EL)DS Components and Monitors. Security monitors will be lo-

cated at each of the critical interaction points discussed in Section 5.1 and connected

to a main security controller. This controller will be responsible for policy decisions,

security system communications, and implementing security updates. The monitoring
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locations provide insight into numerous aspects of the system not previously moni-

tored. This section presents a more detailed view of monitor placement within the

system.

5.2.1.1 Security Controller. The security controller is intended as a

main processor for the security backplane architecture. This processor extends the

capabilities of Mott’s shadow monitoring unit [48] to include a number of additional

features. Mott’s SMU is responsible for performing monitoring of memory, via the

front-side bus, and monitoring of CPU state information exposed by his architecture.

SHI(EL)DS security controller is designed to coordinate between the different security

elements monitoring different system components. It also is responsible for managing

information passed from the network backplane into the system and coordinating local

security policies. This coordination of local security can include passing necessary

information between components as well as enabling and disabling components to

balance security needs with power consumption and performance degradation.

To enable monitoring of processes’ memory, Mott presents a non-uniform mem-

ory access (NUMA). His NUMA architecture is designed to limit the visibility of the

production processing unit into the SMU’s memory space. This research proposes

improving on the security of the memory space dedicated to running SMU software,

by including separate dedicated memory for the security system. Mott’s proposed

NUMA architecture must rely on configurable data available during a system’s boot

process. This presents a possible avenue of attack into the SMU’s exclusive memory.
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By completely separating the security system’s memory from the production system’s

memory, this avenue of attack is removed.

5.2.1.2 Processor State Monitors. Mott proposes exposing the pro-

gram counter and the process identifier (PID) to aid in enforcement of execution

policies and control peripheral access on a per process basis. These concepts are dis-

cussed in more depth in his thesis. SHI(EL)DS includes monitors to expose both of

these signals. The monitors discussed in the following section give us the ability for

physical memory introspection, however, the ability to examine virtual memory can

provide valuable insight into a process’ execution. The memory management unit,

which is responsible for the translation from virtual to physical memory, is one of the

crucial bottlenecks in a system. Due to its highly specialized and optimized design,

modification of the MMU is impractical. However, we do not need to modify the

MMU to determine the link between a virtual address and the corresponding physical

address. Instead, a monitor that exposes the address sent from the processor to the

MMU is provided. Since this monitor is completely passive it avoids negative impact

to the MMU’s performance. The only performance consideration for the capturing

of this information is fanout created by the added wire and a simple buffer. Once

the virtual memory address is exposed the security system must associate it with the

physical address passed out of the MMU.

Mott presents work towards gaining access to virtual memory. He proposes two

methods of achieving this: one that requires co-opting the MMU and another that
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utilizes multiple MMUs on his SMU. Modification to the MMU presents significant risk

to the performance of this system bottleneck. Due to this risk, this concept is designed

to avoid interfering with the design of the MMU completely. The result is a focused,

limited view into virtual memory that can be achieved without risk of compromising

the performance of the production system. This provides a reduced capability to

that provided by Mott’s research, but also reduces impact to the production system.

Though synchronizing the monitored virtual address with the monitored physical

address for association will be a somewhat complex task, there is no increase to

the bus traffic through this monitoring technique. If the security system has some

knowledge of the operation of a production system process and its proper execution,

it can detect attempted access to sections of code that are not meant to be executable.

Mott’s multiple MMU concept shows promise for the capabilities it offers, but

contains one significant drawback: high utilization of the memory bus. This bus is

one of the bottlenecks in current computer architecture design. Though his research

addresses this aspect, it is still an issue. Flooding this bus with memory access re-

quests from multiple MMUs will present a significant risk of performance degradation.

As production systems utilize more processors in their design the contention for this

bus will increase. Any reduction in required access to the memory bus will bene-

fit performance. Although the primary factor in motivating a completely separate

memory for the security processor is increased security, this feature pays dividends in

this situation also. Memory access by the security controller for its own code utilizes

a separate bus, relieving some of the congestion present on the production system’s
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memory bus. This reduces the impact of the security system on the performance of

the production system.

Note that exposing new information on the processor will require dedicated pins

to pass the information off-chip to a dedicated security bus. Alternatively the security

controller processor could be integrated into the main chip. This would still require

dedicated pins to connect to a security bus passing information back from other

monitored components in the system. Figure 5.3 displays these monitors as well as

the monitor from the following section that provides access to physical memory. The

virtual and physical addresses that are gathered by the two monitors are associated

by the security controller providing focused visibility into virtual memory space. The

dotted line denotes what is included on the main chip in current AMD systems.

Figure 5.3: Processor primitives, virtual address, and physical address are all mon-
itored and fed to the security controller.

5.2.1.3 Northbridge Monitors. The northbridge connects a number of

components of the system together. It passes information from the processor, main
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memory, the southbridge, and key performance critical devices such as the graphics

processing unit (GPU). One of the critical components of the northbridge is the

memory controller. The memory controller bridges the processor(s), main memory,

and the rest of the system. This presents us with a question of where precisely to

monitor the memory controller and how to connect to it. Monitors can be placed

inline between the memory controller and memory to provide Immediate Information

of what is being transferred to and from the memory controller. This monitor can

also be placed to snoop the memory bus, achieving First-hand Information. Since

the memory bus is not a shared bus architecture, First-hand Information provides

equivalent reliability to Immediate Information.

Another important monitor to place on the northbridge is one that has visibility

into the memory-mapped I/O (MMI/O) registers. In AMD R©systems these registers

are responsible for mapping memory requests to I/O space. Since the processor only

accesses these registers when specifically intending I/O interaction and peripherals

base their lookup purely on address, this provides an opening that can provide dif-

fering interaction for the processor and peripherals [63]. This is the corruption of the

northbridge that Rutkowska exploits to defeat hardware-based memory acquisition

solutions such as CoPilot [55]. By monitoring the values of these registers this moni-

tor will have visibility into attacks that attempt to cover a portion of main memory

from peripheral access.
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5.2.1.4 Southbridge Monitors and Interaction Points. Since the south-

bridge is responsible for the bulk of I/O communication it is an ideal place to add

isolating points that are capable of shutting off peripherals. Section 5.3.4 describes

such a capability in more detail, using firewire as an example. Monitors on the south-

bridge observe the memory-mapping registers to ensure proper routing of information

to and from I/O components.

5.2.2 Security Backplane Communication.

5.2.2.1 Internal. To allow separate elements of this security backplane

to operate together, the system requires dedicated buses to transmit data between

them. This addition, though logically easy to accomplish since there are plenty of bus

standards available to choose from, will however be one of the most intrusive elements

in a commercial product. It almost necessitates the need for motherboards specifically

designed to accommodate this system for different elements of the security backplane

to communicate with each other. Although the potential does exist to create plug-in1

devices which reside between the different devices and their motherboard connection

which contain their own ports for cables to connect them, this will quickly clutter the

system and potentially lead to unacceptable slow down in some instances. This plug-

in methodology does provide a potential route for implementing a complete system

prototype more quickly than a system which requires extensive modification to a

1To include solder-on devices as well as explicit plug-in devices.
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standard motherboard. Details for a proper implementation of a system prototype

are discussed in 7.2.1.1.

5.2.2.2 External. Communication between different system’s security

backplane is accomplished through the use of a dedicated security network interface

card (SNIC). This SNIC extends the single system security backplane into a backplane

running through an entire security network, such as for a server farm. The security

backplanes communicate with each other information such as the makeup of network

traffic to the production system and that a specific system is assumed compromised.

This provides a number of increases to the inherent security of a server farm. A

system which becomes compromised normally becomes an avenue of attack into the

entire network, but by connecting the network through a separate security backplane

network a system which is identified to be compromised can be isolated from the

network by instructing each system to reject packets from the compromised system.

Another aspect of external communication within the SHI(EL)DS architecture

is the ability to share information of attacks between different systems within the

network being protected and use this aggregate knowledge to better understand the

extent and goals of attacks. While a single system network IDS can gather only

limited information about what is transpiring on the network landscape, a network

interface based IDS is able to grab a broader and more useful picture of attempted

attacks [13]. The backplane architecture expands upon this ability by being able to
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leverage communication between all protected systems within a network to increase

the level of detail that can be gathered on attempted compromise.

Figure 5.4: Depiction of a separate Security Network connecting a number of sys-
tems all equipped with the Hardware-based Security Backplane

An alternate method of communicating with external sources in a more remote

environment, where we might not have full control over the network a system is on,

is through the use of specialized hardware placed on the NIC. This hardware would

be responsible for interpreting specific commands meant for the security backplane.

These commands would be securely sent through the use of a encrypted protocol to

transfer data from a remote source to the system. This concept can aide in developing

a remote Cybercraft deployment platform, discussed further in Chapter VI. When

the NIC is modified to provide a special communication pathway to the security

backplane, the potential exists for relatively secure communication being passed to

the security backplane from a remote source. The level of this security is critically

dependent upon the security of the encrypted data it receives. This alternate method

is crucial in any environment where we do not have the physical security or capability
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to run a secondary network connection to the system. While a system without physical

security is more vulnerable than a physically secured system, this security backplane

still improves upon security. This improvement is due to the only interaction with the

security backplane being through the network connection. By requiring knowledge

of both the update protocols and the specific encryption methods and keys used to

protect communication to the system, the main avenue of attack into the security

system through the NIC is defined.

5.3 Capabilities

5.3.1 Directly Monitor Memory. One of the most core, important capa-

bilities that a security system must have is the ability to monitor First-hand Infor-

mation from main memory. Since current architectures allow memory access from

peripheral devices, avenues of attack exist to compromise a system without running

code on the processor. This is accomplished through peripherals uses direct memory

access (DMA). By adding hardware that directly monitors the memory controller,

be it on-die or on the northbridge chipset, this system guarantees that the monitor

feeds accurate information about what is stored in and requested from memory to

the security system. Figure 5.5 shows a notional example of Rutkowska’s attempted

subversion of hardware on a system protected by the SHI(EL)DS architecture. Since

the monitor accesses the communications between main memory and the memory

controller, regardless of where information is passed by the memory controller, the

monitor will accurately see the information being passed out of memory and know
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where the memory controller is directing the information. This is shown in Figure 5.5

by the security monitor covering the northbridge, depicted in red.

Figure 5.5: Hardware Security Backplane Response to Rutkowska’s Hardware
Based RAM Acquisition and PCI Bus Access

Figure 5.3 shows a more detailed view of a monitor gathering information di-

rectly from the memory bus. Since the monitor sits on the memory bus, it can provide

real-time monitoring of memory. To ensure real-time monitoring the monitor and the

bus connecting to the security controller must operate at least as fast as the mem-

ory bus transfer rate. Note that this ensures only real-time monitoring. Real-time

detection, as defined by Kuperman in Section 2.2.3, can only be achieved if the secu-

rity controller can analyze the monitored memory and detect malicious code before

it compromises the system.
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5.3.2 Towards Reliable Detection of Type III Malware. Rutkowska claims

her Type III Malware is virtually undetectable since it does not modify the OS or

VMM running on the system in any way. Therefore, even if both static and dynamic

verifiers of the system were created, they would report a clean system. To overcome

this ability to hide Type III Malware, the security monitor must be able to ensure

that it has visibility into the entirety of the physical systems memory. This is a

capability provided by the SHI(EL)DS architecture. Although this system provides

this essential requirement for detecting Type III Malware, a complete verifier must be

established at this level as well. Since verifiers to detect both Type I Malware and Type

II Malware are not yet fully realized, a verifier that can detect Type III Malware is

not yet a priority. However, more systems are being equipped with hardware assisted

virtualization and utilizing VMMs. This will almost certainly lead to the use of Type

III Malware. This architecture provides the necessary platform to develop a verifier

to detect this type of malware by guaranteeing an accurate view of memory. A verifier

built without the guarantee of an accurate view of physical memory cannot reliably

identify Type III Malware since the verifier can be running inside of a hypervisor.

5.3.3 Ensure Peripheral Memory Request Matches Address Provided. The

monitors depicted in Figure 5.5 also present another unique capability. By moni-

toring peripheral buses and the MMI/O registers on the northbridge this monitor

can compare the memory address requested by a device, such as a PCI card, to the

memory ranges mapped back towards I/O. If the comparator determines that a pe-
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ripheral requests a memory location mapped back to I/O space it detects an attempt

to mask memory. Security system can respond by repairing MMI/O registers affected

or forcing peripheral request to actual memory.

Figure 5.6: Comparator ensures that I/O memory request is not masked by MMI/O
manipulation.

5.3.4 Isolation of Components and Systems When Compromise Detected.

By using simple fast transistor switches, controlled by the security system, each mon-

itoring point can achieve the ability to shut off access on a temporary basis. An

example where this capability provides added security is shutting off a specific pe-

ripheral that is attempting to compromise a system such as Rutkowska’s avenue into

the system for her exploit described in Section 2.1.3.1. Upon detection of Rutkowska’s

attack the security system sends a control signal to the transistors inline with each

wire of the firewire port in question. Once the attack is detected, this control sig-

nal can be asserted within a clock cycle and the associated wire delay. The critical

component in the speed of this isolation is the time to detect the attack.
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When no attack have been detected from a specific peripheral the control signal

remains de-asserted. A transistor with rise and fall times in the picosecond range will

not impact Firewire 800, which has a period no shorter than 1.25 ns ( 1
800 Mbps

= 1.25

ns per bit).

This concept also extends to the security network backplane level. If a system

in the network is recognized as compromised it can be isolated from the production

network in a number of ways. Other systems in the network can be instructed to ignore

all data being sent from this machine, protecting the compromise from spreading to

other machines in the network. The control center, discussed in Section 5.3.7.1, can

also inform the local backplane of the compromised system to respond locally to the

threat, even if the local backplane had not previously detected a compromise on its

system.

5.3.5 Verifying Integrity of Component Firmware and Boot Information.

Rootkits such as SubVirt, discussed in Section 4.2.5, gain control of a system before

the OS has loaded and insert their VMM so that the OS runs inside of it. Research of

this nature motivates the need to be able to verify the BIOS and firmware for system

components has not been corrupted for an attack such as SubVirt. Having hardware

monitors that are not modifiable by the production system located throughout the

system provides a tool with which to perform this verification. The security backplane

provides a high level of assurance that it cannot be modified by malicious code on

the production system. This assurance can be leveraged during startup as a tool
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to examine components firmware and boot information. A hash of proper code can

verify that these devices have not been corrupted.

5.3.6 Combining Network Intrusion Detection and Host Intrusion Detection.

Combining the knowledge gathered from the two main categories of IDS provides

unique opportunities for aiding in the protection of the system. Each provide the

other with information about the current state of the system which can be leveraged

by the other to improve its security response.

5.3.6.1 Leverage Network Intrusion Detection Information for Host In-

trusion Detection. Depending on the strictness of network ID filters, the number

of potentially malicious packets of information passed into the system varies. The

tradeoff between True Positive rates and False Positive rates has been reduced by

work such as [25], but still remain a significant issue. One possible avenue of further

reducing this tradeoff is to identify potentially malicious packets, which the system

does not have a high confidence of being malicious, and pass them into the produc-

tion system flagged as potentially malicious. The host-based ID effort can leverage

this information to tighten or loosen the specifications defining proper and improper

behavior in the system.

5.3.6.2 Leverage Host Intrusion Detection Information for Network In-

trusion Detection. While the network ID can provide useful information to the

host ID, the opposite is also true. If a host IDS recognizes that malicious code has
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attempted to compromise some aspect of the production system, it can communicate

this information to the network IDS, providing it concrete knowledge that malicious

packets escaped detection. By having a time window of when a compromise occurred,

these packets can be reexamined more in depth to find the specific offending packets.

Without this knowledge, the network IDS has little feedback into the quality of its

detection. Any increased feedback on the effectiveness of the network IDS provides

added ability to tailor the detection process to be more accurate for the specific system

it is attempting to protect.

5.3.7 Addition of Dedicated Systems to the Security Network. This net-

worked backplane allows for systems to be connected through their regular NIC for

purposes such as:

5.3.7.1 Control center for setting policies and updating the security back-

plane. Creating a security backplane that uses dedicated hardware to separate itself

from the production system creates the need for an interface into the security system

that does not rely on the production system. One method of accomplishing this is

including a system attached to the network backplane to be used as a control system.

This control system can be designed to allow a user interface into the state of the

security system across the entire network. It provides a convenient, powerful interface

to the security system without creating new avenues of attack into the system other

than an attacker gaining physical access to the control center machine. This control

center can be utilized to load the signature of a newly discovered rootkit into each
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system in the SHI(EL)DS network. The local security system on each machine can

then use it’s direct memory monitoring capability to examine physical memory for

this signature. This control center can also be used to upload new specifications or

policies in response to outside events. For example, if the an Air Force base utilizing

this system were to change from Infocon Alpha to Infocon Delta, this policy change

could be fed through the control center to each SHI(EL)DS equipped system. Each

system and backplane component can have a tailored response to this policy change.

Systems acting as gateways to external networks can be updated to allow almost no

network traffic, where systems not exposed can have less drastic responses.

5.3.7.2 Dedicated processing power for network based ID with data from

each system. The processing power of additional computer systems attached to the

network security backplane can be employed in a number of ways. By each system’s

security backplane transmitting suspicious packets to a central source, the information

can be examined by a more robust network IDS located there, which has the added

knowledge of network traffic to each individual system in the security backplane net-

work. This can be done to create a central network IDS to govern internet access

or combined as a second layer to work on top of more typical IDS. One advantage

this has over a typical network IDS is the added security the network level systems

have. This extra security is provided by the systems not being accessible by external

Internet sources, except through a compromise of the local SHI(EL)DS architecture.

Network IDS must balance their True Positive and False Positive rates when detect-
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ing potentially malicious packets and perform the entirety of their decision process

fast enough to block what they identify as malicious (within Kuperman’s Real-time

Detection). By creating a second-level to the IDS, this demanding timetable can

be relaxed, allowing the second-level system to perform significantly more in depth

analysis of the potentially malicious packets. This relaxation is created through a

restrictive first-level classifier that is biased towards producing positives. This helps

to increase the True Positive rate, but also incurs a higher False Positive rate. This

first-level classifier still requires a quick response time. However, these potentially ma-

licious packets can be sent to the central processing location where this more in-depth

analysis will occur. Packets identified here as non-malicious can be transmitted back

to their respective production system. Although there is significant delay added to

the time for these packets, the automated second-level identification of False Positives

remains many orders of magnitude faster than passing potentially malicious packets

to an operator such as a network administrator.

Appendix A contains an extension of the jREMISA research that provides a

proof-of-concept for this two-layered approach. This proof-of-concept takes a standard

jREMISA learning run with a comparatively high True Positive and False Positive

rate and flags each potentially malicious packet to be fed into the second-level. At

this second-level the jREMISA learning process is run to create detection antibodies

that focus on the differences between only those packets identified as potentially ma-

licious at the first-level. Appendix A presents a short comparison between a standard

jREMISA solution and this two-layered solution using jREMISA at both levels. While
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this proof-of-concept provides only a small improvement, quantified in Appendix A,

it achieves this without any increase to the allowable processing time. Using a dedi-

cated processor attached to the network security backplane would allow for not only

increased processing time, but also significantly more storage for antibody definitions.

This would help to increase the resolution of detection. The network SHI(EL)DS ar-

chitecture provides a significant storage increase due to the ability to dedicate an

entire system, or cluster of systems if necessary, to provide this increase. Such a

system could easily achieve Terabytes of storage, though the more this increases the

greater the computational time of the second-level will need to be.

5.3.7.3 Storage location with data collection for forensics. Although

this capability is beyond the scope of this research, the networked security backplane

provides valuable options to forensic capabilities. Tuting and Williams [74] explores

this capability, discussed in more detail in Section 7.2.3. The key aspect of this

capability is the ability to leverage a large amount of dedicated storage to record the

desired forensic data.

5.4 SHI(EL)DS’ Weaknesses

Despite the significant improvement offered by this architecture, it is not a

perfect solution. This section presents a number of negative aspects of this system

and vulnerabilities not addressed by the hardware-based security solution.
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5.4.1 Physical Security. While one of the key improvements this security

architecture has provided is towards the security of the security system, it is important

to note that the architecture is not an impenetrable security system. One clear

example of this is the physical security of a system equipped with SHI(EL)DS. As

with any computer system, if an adversary can physically manipulate the system,

security becomes all but impossible to maintain [17].

5.4.2 Design and Implementation Cost. Although this design focuses on

minimizing changes to the production system, almost every element of this system

requires additional hardware. Offsetting the high development cost associated with

this implementation, is the minimal impact it will have on the production system.

Eliminating redesign of production hardware and the associated ISA reduces the in-

tegration costs. This hardware will be integrated throughout the entire motherboard

in production systems, with the most notable addition being a dedicated security

processor and memory. Much of this new hardware will be monitors which must

be designed to successfully capture the targeted information accurately and securely.

These monitors and the dedicated security processor will incur a significant cost for

their design and development. This cost presents a significant obstacle to overcome

in terms of developing the SHI(EL)DS architecture, but these costs are offset by the

security gains of the proposed solution presented in this chapter. For security critical

systems and networks, additional costs for improved security is a reasonable expendi-

ture. A SHI(EL)DS equipped system would present a costs estimate less than double
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that of an unprotected system, based purely off component costs. This rough esti-

mate assumes to key pieces of information to cap the cost estimate: not every single

component is monitored, and monitors are comparatively simple pieces of hardware

to what they are monitoring.
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VI. Integrating SHI(EL)DS Into the Cybercraft Initiative

T
his chapter presents the Air Force’s Cybercraft initiative and show how the

SHI(EL)DS research integrates into it. It begins by describing the basic ideas

behind Cybercraft and key ideas and capabilities relating to Cybercraft. Once the

basics of this initiative are established, the benefits of using SHI(EL)DS in Cybercraft

are shown and key capabilities provided are explored. This chapter looks at both the

general concepts and more specific details in terms of how this research improves

Cybercraft.

6.1 Cybercraft

The overarching goal of the Cybercraft initiative is to create a trusted deploy-

ment platform for blue information systems [69]. Current research focuses on deploy-

ing Cybercraft to internet protocol (IP) administration networks, with the intention

of eventually covering the entire blue cyber infrastructure. Cybercraft provides for

the deployment of defensive capabilities to the cyber infrastructure through a trusted

platform.

6.1.1 Cybercraft Architecture Objectives. In creating the basic architecture

specifications, four key objectives are identified [7]. These objectives influence the

design direction in different ways. The second and third objectives pertain mostly

to the intercommunication architecture between systems. The first and fourth each

influence the architectural requirements of the Cybercraft specification significantly.
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Simple Must have a consistent design

Scalable Support operations on more than one million systems

Reliable Cannot allow single points of failure

Provable Provably secure operation of the Cybercraft is paramount

6.1.2 Cybercraft Problem Domains. AFCYBER Mission Roles and Respon-

sibilities described in [75] are mapped to Cybercraft problem domains in an attempt

to bridge the transition between operational and real world requirements. The Cy-

bercraft problem domains are listed here with some basic descriptions [69, 21].

C3 Protocols and Architecture Command, control, and communication (C3) pro-

tocols need to support more than one million nodes with a secure architecture.

Map and Mission Context A key role of Cybercraft is distributed information

retrieval.

Environment Description To understand the environment that Cybercraft are de-

ployed in the system must merge sensor information into an understanding of

the state of the system

Formal Model and Policy Formally modeling the Cybercraft and establishing poli-

cies will help ensure that the system operates in the manner intended by com-

manders.

Payload Interfaces These interfaces need to be dynamically alterable. This allows

for updated solutions to be reliably uploaded to the Cybercraft platform.
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Self-Protection Guarantee Creating a Cybercraft deployment platform which can

provide a high level of security to itself is essential for continued trusted opera-

tions of the Cybercraft infrastructure.

6.1.3 Main Cybercraft Components. The Cybercraft concept at the individ-

ual systems level is composed of two main ideas: the Cybercraft deployment platform

and payloads which are loaded onto them [21]. This section presents the basic de-

scription of each here and attempts to draw clear lines between the roles of each in a

systems defense.

Cybercraft Deployment Platform Trusted mechanism residing on protected sys-

tems, responsible for providing a framework to gathering data, interacting with

the system, and communicating with the entire Cybercraft infrastructure. The

key design focus is to provide the necessary capabilities, in a trusted platform.

Payloads Specific sensors, decision engines, and effectors which are uploaded to the

Cybercraft deployment platform.

This research fits well into the goals and requirements for the Cybercraft deployment

platform. The following section describes in detail the aspects of this system that

provide a basis for developing the Cybercraft deployment platform. It also ties this

development back to the Cybercraft problem domain discussed in Section 6.1.2
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6.2 Mapping Cybercraft Deployment Platform Requirements to SHI(EL)DS

Capabilities

6.2.1 Trusting the Cybercraft. One of the most critical issues of Cybercraft

is the ability to trust the platform and it’s payload to operate correctly. As seen in

Section 6.1.2, the ability to guarantee self-protection is one of the core Cybercraft

problem domains. Two key components to achieving this is establishing a root of

trust and reducing the avenues of attack to a defendable quantity. The SHI(EL)DS

architecture makes significant progress towards both of these requirements.

6.2.1.1 Root of Trust for Cybercraft Deployment Platform. The SHI(EL)DS

research provides the potential for meeting all three roots of trust as defined by the

TCG [24] in Section 2.3.2.

Root of Trust for Measurement (RTM) As this research has developed, the only

way to trust measurements about the production system is to achieve at least

First-hand Information for anything that is being measured. This system is

designed to gather at worst First-hand Information from everything that it

monitors.

Root of Trust for Storage (RTS) Significant work has gone into attempting to

create trustworthy storage via both maintaining higher levels of privilege for

the security systems storage and through encrypting the data being stored. By

creating a physically separate storage for the security system, it eliminates all

direct access to the security systems storage.
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Root of Trust for Reporting (RTR) The separate security network presented in

this research provides an avenue for trusted reporting. By not relying on the

production system to transmit messages this system presents a more secure

communication pathway.

By proposing a system that can provide each of these roots of trust this research

enables a high level of confidence in this security architecture. Since this architecture

does not allow for the production system to modify the code of the security system,

barring an attack by someone with physical access to the system to compromise the

security system software, when the system is initiated it is in a trustworthy state.

6.2.1.2 Reducing Avenues of Attack. The SHI(EL)DS architecture is

designed to allow only constrained hardware-based communication pathways between

the production and security systems. This limiting of the communication reduces

the main avenues of attack on the security system to a small set of mainly passive

monitors. These monitors can be designed with security as their primary focus, not

performance, since they will have little to no effect on the production system, unless

responding to an attack. Many current security solutions utilize software communica-

tion from the kernel and share main memory. Both of these aspects present avenues

of attack upon the security system.

6.2.2 Accurate Information Retrieval. Leveraging an understanding of the

need for First-hand Information to guarantee accurate information retrieval by the

security system, the SHI(EL)DS architecture is in a unique position to ensure that the
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information gathered is indeed representative of the state of the monitored system. As

we become aware of new pieces of information which will benefit the Cybercraft mis-

sion, new modules can be designed to fit into the SHI(EL)DS architecture that achieve

at least First-hand Information about the targeted mechanism. Another key aspect

of the information retrieval provided by this security system is that it can continue

to report information on the state of the production system after that production

system has been compromised. Since there is a separate backplane architecture, an

attack must also compromise it to reliably achieve a stealthy attack on the overall

system. This will allow for insight into the malicious activities being performed by

the compromised system to be leveraged by the entire Cybercraft infrastructure.

6.2.3 Merging Gathered Information. The inclusion of a dedicated security

processor in the SHI(EL)DS architecture allows for a secure location to analyze data

on the state of the production system. From there the security processor can both

react to potential threats it sees on the local machine and transmit secure communi-

cations back to a higher level system in the Cybercraft communications architecture.

If this information must be passed over normal Internet connections, strong encryp-

tion must be employed to secure it as best as possible. Even if the information is

passed solely over the security network backplane, encryption should still be used to

help protect against the possible physical breach threat. This data can be compiled

from a multitude of Cybercraft deployment platforms to provide a understanding of
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trends in systems usage and provide additional knowledge to make decisions about

the appropriate response of individual Cybercraft.
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VII. Conclusions

W
e conclude this work be reviewing the key findings of this research and

presenting a number of areas for future work which are illuminated by it.

7.1 Conclusions

7.1.1 Trustworthiness of Information. By developing this axis of classifi-

cation, key insights into the development of security systems are gained. Design of

new security systems will have a clear understanding of what is required to guarantee

accurate information about the production system and what they sacrifice by not

achieving at least First-hand Information.

7.1.2 Necessity of Dedicated Hardware for Security. This research presented

a number of key advantages offered by properly designed security hardware and ex-

plored what is necessary for proper design. This research into the design of hardware

is critical, since improperly designed hardware leaves significant vulnerabilities in the

system. Each of the following abilities is gained only through the use of dedicated

hardware or is significantly enhanced by its use.

Reduced Avenues of Attack Separating the security system into dedicated hard-

ware allows for defining the exact connections between the security and produc-

tions systems.
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Ability to Gather Trustworthy Information This new axis defined illuminates

the need for security solutions which can provide First-hand Information. Only

hardware-based solutions can accomplish this.

Additional/Different Information Available Hardware dedicated to monitoring

information not normally exposed by the processor, such as Mott’s research, pro-

vides previously unavailable information to be leveraged for security purposes.

An example of this include the value of the program counter register.

Timeliness of Detection Network ID and processor monitoring are two scenarios

where the speed of dedicated hardware can greatly enhance the security capa-

bilities.

Physical Response Dedicated hardware can provide added physical security for

remote computer systems by providing a destructive response when compromise

is detected.

7.1.3 Requirements for Effective Hardware Design. By defining a list of

requirements for hardware-based security system design this research provides vital

insight into the design of future security systems. These requirements, relisted here,

each provide unique aspects of security to potential solutions. The first four design

elements listed below form requirements for any partial or complete security solution

to be effective and secure. The final design element is required for producing complete

security solutions.

• First-hand information of all monitored information
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• Dedicated monitors for parallel, concurrent monitoring

• Explicit hardware communication between the production and security systems

• Dedicated storage of security code and data

• Dedicated security processor for controlling and coordinating the security mech-

anisms

7.1.4 Modular, Hardware-based Security Framework. Using the insight from

the above contributions, this work developed key aspects of an extensible security

solution. This hardware-based security backplane, SHI(EL)DS, provides a modular

framework which can be extended both with new local security mechanisms and into

a network security backplane. It provides a comprehensive system approach to gather

unique, accurate information from system components and make the security system

itself more secure. It is designed to adhere to each of the requirements reiterated in

Section 7.1.3 and provide significant advantages to each of the benefits discussed in

Section 7.1.2.

7.1.5 Cybercraft Deployment Platform Development. The Cybercraft ini-

tiative represents a new focus on more comprehensive security solutions throughout

the entire cyber infrastructure. The SHI(EL)DS architecture provides a basis for the

Cybercraft Deployment Platform and provides significant progress to many of the

essential requirements of Cybercraft. SHI(EL)DS’ improvement towards the security

and trust of the Cybercraft Deployment Platform is provided by the hardware sep-

aration which reduces the avenues of attack on the security system to a limited and
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well understood set of hardware communication pathways. If these pathways can be

proven secure, it is possible to prove the entire security system is also secure from an

attack that originates on the production system. To accomplish this one must also

prove that the understood hardware communication pathways are the only avenues of

attack from the production system to the security system. The SHI(EL)DS architec-

ture also involves hardware primitives designed to gather information not previously

available to the system. This information helps to provide the Cybercraft payloads

with a greater depth of information to apply sensors, decision engines, and effectors

to.

7.2 Future Work

While this research presents a number of key contributions to the field of com-

puter security and the need for hardware in this field, it also opens up numerous

avenues of research to press forward with. This section describes some of these areas

of future work here.

7.2.1 Security Backplane Prototypes. This research has developed a system-

wide hardware-based security backplane architecture. Although this system provides

the potential to become the base of a complete security solution, prototyping the

SHI(EL)DS architecture is a massive undertaking. This section presents a few sug-

gestions of the first steps towards prototyping this system and demonstrating key

abilities that this system provides.
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7.2.1.1 Local Security Backplane Prototype. The primary system ele-

ments which need to be developed are the dedicated security processor and memory,

key monitoring devices such as the memory controller, and the dedicated security

communication pathways. By beginning with the security processor and communi-

cation pathways this achitecture develops a core system which can be built upon to

add features. A first prototype would involve mechanisms such as a SRAS discussed

in Section 4.3.4.2. Another important monitor to be included in a SHI(EL)DS proto-

type is one which monitors the memory controller. This key location begins to spread

the focus of computer security out from the current two focuses: processor ID and

network ID. While these two areas are arguably the most important areas to secure,

Rutkowska’s work [63] demonstrates that they are not the only avenues of attack to

compromise a system.

7.2.1.2 Security Backplane Communication. Another important area

of future research is exploring ways to combine information from different mecha-

nisms within the security backplane architecture. One straightforward example of

this mentioned in this research is when the local security system recognizes the pro-

duction system is compromised. It can either cut its network access on its own or

communicate with other networked backplanes to ensure they block communications

from the compromised production system combining elements of host based IDS and

network IDS. While this example shows obvious benefit, other communications and

coordination between mechanisms of the security solution can provide the potential
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for increased flexibility and accuracy of response. A couple possible examples of this

communication include:

• Allowing suspicious, but not known malicious, packets onto the system and

notifying other security mechanisms to suspect compromise more readily.

• Notifying the network IDS portions of all systems when a system is known to

be compromised to help update and improve their identification process. This

idea is discussed in slightly more detail below.

• Isolating system components which are likely to be corrupted and attempting

to continue operating at a reduced capacity.

7.2.1.3 Networked Security Backplane Prototype. While expanding

the SHI(EL)DS concept into a network security backplane requires a local prototype to

be established first, a proof-of-concept can be realized using standard hardware much

more quickly. A simple scenario can be modeled through simulating a compromise of

a production system and providing notification to a central network security system,

which leverages the recorded network traffic of a known compromised system to more

accurately identify malicious packets. By leveraging this capability this architecture

can gain an ability to shape the network ID response through this out-of-band analysis.

This ability is similar to the learning phase for artificial immune systems. Having this

feedback improves the adaptability of this security system. This improvement comes

from being able to leverage the detection of malicious packets on one system to update

the future detection criteria on another system. Modeling the production system
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having both its internal and external network access blocked is also a realizable goal

for a network security backplane prototype and can be used to minimize the impact

of a single compromised system on the entire network’s operation.

7.2.1.4 Incorporate SHI(EL)DS into Network Devices. Although this

research is focused on a standard desktop or server computer architecture, the un-

derstanding gained in Chapter III can also be leveraged to adapt the SHI(EL)DS

architecture to work on devices such as network switches, routers, and gateways. Ex-

tending the SHI(EL)DS architecture into these devices is the only way to achieve

First-hand Information from networks’ first line of defense. Research into this area

can help protect networks from attacks that compromise these devices to provide in-

ternal network access and the ability to snoop internal communications. This research

can also be tied into the other elements of SHI(EL)DS to provide an even more com-

prehensive security solution. Knowledge from each level of the security backplane can

be combined to provide a more complete picture of what is happening on Air Force

networks and enable more informed, detailed responses.

7.2.2 Combine SHI(EL)DS Architecture with Current Solutions. One of

the most useful features of the SHI(EL)DS architecture is its ability to adapt other

security concepts into the basic design. By leveraging a dedicated security processor,

software-based solutions can be adapted to run without having to contend for produc-

tion system resources. The central security processor with dedicated communications
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pathways allows for an easily extensible backplane which can incorporate different

hardware primitives and monitoring concepts.

7.2.2.1 Incorporating Network Hardware and Software Solutions. Net-

work solutions such as Haag’s jREMISA, discussed in Section 4.1.2, can be incorpo-

rated into the SHI(EL)DS architecture as software running on the security system.

Once a SHI(EL)DS prototype is designed, software solutions such as jREMISA can

be adapted to react to the information gathered by the hardware monitors.

7.2.2.2 Incorporating Hardware Primitives. Mott’s work presents a

number of hardware primitives which provide new information and new capabili-

ties [48]. Each of these primitives presents a potential module to be added to the

core SHI(EL)DS architecture. Research on the cost and benefits of each of these

when incorporated into this system will provide useful direction into which security

mechanisms to add to SHI(EL)DS first, to create a more complete security solution.

This research will be aided by the understanding of the benefits and requirements of

designing dedicated hardware for security.

7.2.2.3 Incorporating Other Hardware Solutions. Solutions such as the

hardware-based network IDSs discussed in Section 4.3.3 present systems which can be

adapted to operate within the bounds of the SHI(EL)DS architecture. Research into

which of these systems provides the most beneficial and complete network protection

and which will integrate with SHI(EL)DS most efficiently will provide a successful
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leap forward in designing complete, hardware-based security solutions. These systems

should be analyzed against the understanding of the capabilities hardware can provide.

This work in understanding the need for dedicated hardware and the requirements for

providing new or enhanced capabilities presents a path forward in analyzing proposed

hardware solutions, both on their own and as an element to be incorporated into the

SHI(EL)DS architecture.

7.2.3 Explore Network Backplane as Forensics Tool. By creating a security

system with its own dedicated storage, this architecture improves the capabilities

of computer forensics significantly. Tuting’s thesis presents research into gathering

accurate information of the production systems memory and analyzing it for forensic

purposes. Significant progress can be made by melding this work in forensics into

the SHI(EL)DS architecture. SHI(EL)DS provides this work with the potential for

dedicated processing power to analyze the information gathered. It also provides a

trusted avenue for receiving First-hand Information so it can ensure that it performs

its forensic analysis on the actual state of the system.

7.2.4 Explore New Hardware Primitives to Add as SHI(EL)DS Modules.

Work such as Mott’s thesis present a number of different hardware primitives which

provide unique information about a system that was not available without his pro-

posed hardware changes [48]. With the understanding gained through this work in

terms of what is required to yield security benefits from hardware, it provides a solid

framework for exploring new locations within a system to insert hardware primitives
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and monitor previously unavailable information. This work in understanding the need

for hardware and developing the SHI(EL)DS architecture will also aid in understand-

ing the cost/benefit analysis of different hardware primitives to add once they are

discovered.
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Appendix A. jREMISA Enhancements: Two-layer Network Intrusion

Detection System

T
he goal of this software is to enhance the functionality of jREMISA [25] by

tuning it to be extra aggressive in identifying Non-self packets and adding an

additional automated decision maker (a second IDS) inline between the current AIS

and the system administrators. By tuning the initial jREMISA algorithm to be extra

aggressive, the focus of the secondary IDS changes from that of a standard IDS. This

system now focuses on identifying those suspicious packets that are indeed Self, i.e.

identifying each False Positive.1 Many options are available to us for creating this

second level of security. A second AIS or another form of Evolutionary Algorithm.

Although the scale of the data has been reduced from the initial load to be examined

the dataset is large enough to make classic deterministic search algorithms impractical.

With a primary focus on securing a system completely (at the risk of reduced

functionality) the goals of ID can be focused specifically on the speed of detection, and

the minimization of False Negatives. This focus will most likely result in a significantly

increased False Positive rate as well. By creating a second layer to inspect purely the

signals which have been blocked, timeliness becomes significantly less critical since the

packet will not be allowed. This provides us the opportunity to leverage this extra

time flexibility to create a significantly more complex second level detector which

can provide more accurate identification and potentially allow falsely denied packages

1When examining the code base of jREMISA modified for these experiments it is important to
note that the definition of False Positive and False Negative are reversed, i.e. a False Positive is a
Non-self recognized as Self and likewise for the False Negative.
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access once they have been cleared. Regardless of which type of algorithm is applied

for the secondary system, in order to render it effective the selection criteria must be

as orthogonal as possible. Careful tuning of parameters can help to accomplish this,

as well as examining different portions of the packet in the initial jREMISA run and

the secondary IDS run. The goal is to attempt to loosely and conservatively identify

possible Non-self packets and then take a closer look at all of these packets, hoping

to identify key aspects separating Self from Non-self which would not be apparent

in or masked by the complete network data set.

One benefit gained through the use of a secondary IDS which is only examining

those packets assumed to be Non-self is time. The reasoning for this is twofold: (1)

since the first layer have already let through the major portion of Self packets is allows

the majority of network traffic to continue unhindered through the system, only slow-

ing down the suspicious packets and (2) since most current systems rely on a human

in the loop such as a system administrator to provide this second level of defense, a

substantial amount of slowdown would be required to present an automated secondary

system which would not still be significantly faster than this human’s identification

of Self and Non-self packets. This increase in time presents us with the opportunity

to implement a more detailed and accurate identification system by trading off speed

performance. Significantly more involved systems can be implemented to leverage this

idea while still providing performance far more expedient than the standard human

in the loop. One more advanced option would be to offload all suspicious packets to a

dedicated system which uses the entirety of its resources to reclassify packets as Self
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or Non-self and return the former packets flagged to be allowed through the initial

jREMISA system at the primary location.

A.1 Design of Experiments

As proof of concept these experiments run the jREMISA algorithm on a single

day truth set, from the MIT Lincoln Laboratory 1999 Intrusion Detection Evalua-

tion Data Sets [46], two times with varied parameters to simulate at least partially

orthogonal selection parameters. When the attack data is run through the jREMISA

algorithm with the first selection parameters all False and True Positives are recorded.2

With the second selection parameters, only attack day data set packets which were

flagged as Non-self through the system are run. By showing a resultant classification

which is more accurate than either of the selection parameters run by themselves

against the entire attack day data set, it demonstrates the viability of these enhance-

ments.

A.2 Results

Once the negative selection phase of the jREMISA algorithm is completed on

each day’s data, the MOEA step is executed, recording all packets positively identified

as Non-self regardless of this validity. This research achieves results relatively similar

to that achieved by Haag. These results are shown in Table 1

2As defined in this document, not the jREMISA code base.
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Attack Day True Pos. False Neg. True Neg. False Pos.

Monday 99.4346% 0.5653% 84.9497% 15.0503%
Tuesday 70.2127% 29.7873% 86.8922% 13.1078%
Wednesday 71.8897% 28.1103% 82.2047% 17.7953%
Thursday 94.4111% 5.5889% 77.3912% 22.6088%
Friday 99.8226% 0.1774% 72.7075% 27.2925%

Table 1: First Pass jREMISA MOEA results

Using the positively identified packets file, this software runs through the jREMISA

algorithm again, focusing only on those packets which were positively identified for

shaping of the MOEA. This research focuses on the Friday data, from the Lincoln

Laboratory Dataset, since it provides the best coverage from the standard jREMISA

first pass and therefore likely represents the most difficult to further improve. The

results of this can be seen in Table 2. It is important to note that the percentages rep-

resented in this table are only in reference to the two specific categories from Friday’s

data in the previous table: the True and False Positives.

Attack Day True Pos. False Neg. True Neg. False Pos.

Friday 99.9613% 0.0388% 83.1607% 16.8393%

Table 2: Second Pass jREMISA MOEA Friday Results

Table 3 shows the updated overall percentage for the Friday data. This data

shows a significantly reduced percentage of Self packets misidentified with a fairly

small hit to the accuracy of identifying Non-self.

Attack Day True Pos. False Neg. True Neg. False Pos.

Friday 99.7840% 0.2160% 95.4041% 4.5959%

Table 3: Overall Enhanced jREMISA Friday Results
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Although this decrease in the True Positive accuracy is contrary to arguably the

most important goal there are a number of key points which mitigate this undesirable

consequence. First and foremost, the code used to demonstrate this feasibility is

optimized for a single pass on that data; with this two-pass approach the first approach

can be specifically tailored to approach 100% accuracy on the True Positives, by

deemphasizing the negative effect of a False Positive report. While this approach will

present an increase in the number of False Positives, the second pass has been shown

as a feasible method for reducing this increase. Secondly, since only the stochastic

nature of the MOEA are used to create some level of orthogonality between the

first and second pass filtering, this aspect has certainly not been exploited to its full

potential. Finally, these feasibility experiments do not in any way leverage one of

the most important advantages of this two pass system: a significant increase in the

available processing time for the second pass. With data the presents the two-pass

system as a viable method of further classifying network packets, this work shows that

leveraging a two-pass concept in overall security system design can have a positive

impact to overall accuracy.
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Ashley Thomas. “A Hardware Platform for Network Intrusion Detection and

117



Prevention”. Proceedings of the Third Workshop on Network Procesors and Ap-
plications (NP3). Madrid, Spain, February 2004.

14. Coello, Carlos A. and Nareli Cruz Cortés. “Solving Multiobjective Optimiza-
tion Problems Using an Artificial Immune System”. Genetic Programming and
Evolvable Machines, 6(2), 2005.

15. Crosbie, Mark J. and Benjamin A. Kuperman. “A Building Block Approach to
Intrusion Detection”. RAID ’00: Proceedings of the 4th International Symposium
on Recent Advances in Intrusion Detection. October 2001.

16. Edge, Kenneth S., Gary B. Lamont, and Richard A. Raines. “A retrovirus inspired
algorithm for virus detection & optimization”. GECCO ’06: Proceedings of the
8th annual conference on Genetic and evolutionary computation. 2006.

17. Fabian, Walter. “Physical access to computers: can your computer be trusted?”
Proceedings of the 29th Annual 1995 International Carnahan Conference on Se-
curity Technology. IEEE, Piscataway, NJ, USA, Sanderstead, Engl, Oct 1995.

18. Foster, D. and V. Varadharajan. “Security and trust enhanced mobile agent
based system design”. Information Technology and Applications, 2005. ICITA
2005. Third International Conference on, 1, July 2005.

19. Garfinkel, Tal, Ben Pfaff, Jim Chow, Mendel Rosenblum, and Dan Boneh. “Terra:
a virtual machine-based platform for trusted computing”. SOSP ’03: Proceedings
of the nineteenth ACM symposium on Operating systems principles. 2003.

20. Gillespie, Matt. Intel R©Virtualization Technology. Technical report, Intel Corp.,
2007.

21. Glumich, Sonja and Brian Kropa. “Cybercraft Briefing to JFCC”. Air Force
Research Lab, Information Directorate, November 2007.

22. Gonzalez, Jose M., Vern Paxson, and Nicholas Weaver. “Shunting: a hard-
ware/software architecture for flexible, high-performance network intrusion pre-
vention”. CCS ’07: Proceedings of the 14th ACM conference on Computer and
communications security. 2007.

23. Gordon-Ross, Ann and Frank Vahid. “Frequent loop detection using efficient non-
intrusive on-chip hardware”. CASES ’03: Proceedings of the 2003 international
conference on Compilers, architecture and synthesis for embedded systems. 2003.

24. Grawrock, David. “TCG Specification Architecture Overview, Revision 1.4”,
August 2007. https://www.trustedcomputinggroup.org/groups/.

25. Haag, Charles R., Gary B. Lamont, Paul D. Williams, and Gilbert L. Peterson.
“An artificial immune system-inspired multiobjective evolutionary algorithm with
application to the detection of distributed computer network intrusions”. GECCO
’07: Proceedings of the 2007 GECCO conference companion on Genetic and evo-
lutionary computation. 2007.

118



26. Hart, Samuel. APHID: Anomoly Processor in Hardware for Intrusion Detection.
Master’s thesis, Air Force Institute of Technology, March 2007.

27. Howorth, Roger. “Virtual Servers Pay Off”. March 2003.
http://www.vnunet.com/itweek/news/2084897/virtual-servers-pay.

28. Hutchings, B. L., R. Franklin, and D. Carver. “Assisting Network Intrusion Detec-
tion with Reconfigurable Hardware”. FCCM ’02: 10th Annual IEEE Symposium
on Field-Programmable Custom Computing Machines, 00, 2002.

29. Intel. “Introducing the 45nm Next-Generation In-
tel Core Microarchitecture”. White Paper.
http://www.intel.com/technology/architecture-silicon/intel64/.

30. Intel. Intel Xeon Processor with 533 MHz Front Side Bus
at 2 GHz to 3.20 GHz. Technical report, February 2004.
http://www.intel.com/design/xeon/datashts/252135.htm.

31. Intel. Intel Trusted Execution Technology. Technology overview, Intel Corp., 2007.
http://www.intel.com/technology/security/.

32. Intel. Intel Trusted Execution Technology. Architectural overview, Intel Corp.,
2007. http://www.intel.com/technology/security/.

33. Intel. Intel Trusted Execution Technology. Preliminary architectural specification,
Intel Corp., August 2007. http://www.intel.com/technology/security/.

34. King, Samuel T., Peter M. Chen, Yi-Min Wang, Chad Verbowski, Helen J. Wang,
and Jacob R. Lorch. “SubVirt: Implementing malware with virtual machines”.
Proceedings of the 2006 IEEE Symposium on Security and Privacy, 2006.

35. Ko, C., M. Ruschitzka, and K. Levitt. “Execution monitoring of security-critical
programs in distributed systems: a Specification-based approach”. Proceedings of
the 1997 IEEE Symposium on Security and Privacy, 00, 1997.

36. Kuperman, Benjamin A. A Categorization of Computer Security Monitoring Sys-
tems and the Impact on the Design of Audit Sources. Ph.D. thesis, Purdue Uni-
versity, 2004.

37. Landwehr, Carl E., Alan R. Bull, John P. McDermott, and William S. Choi.
“A taxonomy of computer program security flaws”. ACM Comput. Surv., 26(3),
1994.

38. Lee, Ruby B., David K. Karig, John P. McGreggor, and Zhijie Shi. “Enlisting
Hardware Architecture to Thwart Malicious Code Injection”. Lecture Notes in
Computer Science: Security in Pervasive Computing. 2004.

39. Levine, J.; Owen H., J.; Grizzard. “A methodology to detect and characterize
Kernel level rootkit exploits involving redirection of the system call table”. In-
formation Assurance Workshop, 2004. Proceedings. Second IEEE International,
107–125, April 2004.

119



40. Lindqvist, Ulf and Erland Jonsson. “How to Systematically Classify Computer
Security Intrusions”. SP ’97: Proceedings of the 1997 IEEE Symposium on Secu-
rity and Privacy, 154. IEEE Computer Society, Washington, DC, USA, 1997.

41. Lippmann, Richard, David Fried, Isaac Graf, Joshua Haines, Kristopher Kendall,
David McClung, Dan Weber, Seth Webster, Dan Wyschogrod, Robert Cunning-
ham, and Marc Zissman. “Evaluating Intrusion Detection Systems: The 1998
DARPA Off-line Intrusion Detection Evaluation”. Proceedings of the DARPA
Information Survivability Conference and Exposition. IEEE Computer Society
Press, Los Alamitos, CA, 2000.

42. Loscocco, P., S. Smalley, P. Muckelbauer, R. Taylor, J. Turner, and J. Farrell.
“The inevitability of failure: The flawed assumption of computer security in mod-
ern computing environments”. Proceedings of the 21st National Information Sys-
tems Security Conference. October 1998.

43. McAfee Products, 2007. http://us.mcafee.com/root/store.asp.

44. McHugh, John. “Testing Intrusion detection systems: a critique of the 1998 and
1999 DARPA intrusion detection system evaluations as performed by Lincoln
Laboratory”. ACM Trans. Inf. Syst. Secur., 3(4):262–294, 2000. ISSN 1094-9224.

45. Medley, Douglas. Virtualization Technology Applied to Rootkit Defense. Master’s
thesis, Air Force Institute of Technology, March 2007.

46. MIT Lincoln Laboratory. “DARPA Instrusion Detection Evaluation Data Sets”.
http://www.ll.mit.edu/IST/ideval/.

47. Molina, Jesus and William Arbaugh. “Using Independent Auditors as Instrusion
Detection Systems”. Information and Communications Security: 4th Interna-
tional Conference, December 2003.

48. Mott, Stephen. Exploring Hardware-Based Primitives to Enhance Parallel Secu-
rity Monitoring in a Novel Computing Architecture. Master’s thesis, Air Force
Institute of Technology, March 2007.

49. Mott, Stephen, Samuel Hart, David Montminy, Paul Williams, and Rusty Bald-
win. “A Hardware-based Architecture to Support Flexible Real-Time Parallel
Intrusion Detection”. Proc. 2007 IEEE International Conference on System of
Systems Engineering, 2007.

50. Nerenberg, Daniel. A Study of Rootkit Stealth Techniques and Associated Detec-
tion Methods. Master’s thesis, Air Force Institute of Technology, March 2007.

51. Ning, Peng, Sushil Jajodia, and Xiaoyang Sean Wang. “Abstraction-based intru-
sion detection in distributed environments”. Information and System Security,
4(4):407–452, 2001.

52. Norton Products, 2007. http://www.symantec.com/norton/products/index.jsp.

120



53. One, Aleph. “Smashing the Stack for Fun and Profit”. Phrack, 1996.
http://www.cs.wright.edu/ tkprasad/courses/cs781/alephOne.html.
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